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Two	Key	FuncFons	
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Stage	IV	Weak	Lensing	
•  Weak	lensing	shear	is	great!	

–  SensiFve	to	both	expansion	history	and	growth	of	structure	
–  Directly	connected	to	mass	distribuFon	
–  …	but	a	Fny	signal.	

•  3	“flagship”	programs	for	the	2020s	–	LSST,	Euclid,	WFIRST	
•  I’ll	focus	on	the	WFIRST	weak	lensing	program	in	this	talk:	

–  in	space	for	stability	and	to	avoid	atmospheric	effects	on	PSF	
–  mulFple	(~6)	passes	over	the	footprint	for	redundant	measurements	
–  shape	measurement	in	NIR	(combined	with	photo-z	imaging)	
–  will	be	embedded	in	LSST	footprint	
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WFIRST	Programs	

•  2.36	m	primary	mirror	

•  Wide	Field	Channel:	
•  18x	H4RG	detectors	
•  3x108	pix	total	

•  Also:	IFC	&	coronagraph	(not	
this	talk)	

•  Launch:	mid-2020s	
•  6	year	nominal	mission	

High	laFtude	
survey	

Supernovae	

Microlensing	

Coronagraph	

GO	

No5onal	breakdown	of	observing	programs	

High	laFtude	survey	(Science	InvesFgaFon	Team:	PI	Doré)	includes	both	imaging	and	
grism	spectroscopy.	



WFIRST	ConfiguraFon	

5	(WFIRST	Project	–	KDP-A)	



Primary	Mirror	Assembly	
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Harris	CorporaFon	/	TJT	Photography	



WFIRST	Detectors	
•  Sensor	Chip	Array:	

–  4k	x	4k	array	of	p-n	juncFons	in	
HgCdTe	
(light	sensiFve	material;	band	gap	
tunable,	~2.3	µm	cutoff	for	WFIRST)	

–  In	interconnect	to	Si	readout	circuit/
mulFplexer	

•  Flex	cable	
•  Sensor	Cold	Electronics	

–  Signal	is	digiFzed	here	
•  These	detectors	are	not	CCDs	

–  FET	on	each	pixel,	charge	not	
transferred,	read-out	is	non-
destrucFve	

7	WFIRST	SDT	Report	2015	



Detector	Technology	Milestones	
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Passed	9/22/16	

(from	the	WFIRST	NIR	Detector	Technology	Report)	



Summary	from	WFIRST	Project	NIR	
Detector	Milestone	#4	Report	
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The	WFIRST	weak	lensing	program	has	the	raw	sta7s7cal	power	to	
measure	σ8	to	±0.1%.	Similar	advances	will	be	made	on	the	other	
parameters	rela7ve	to	current	weak	lensing	programs.	
	
Trying	to	measure	a	1%	shear	signal	to	0.1%	accuracy.	Reliable	results	
at	this	level	will	require	1-2	order	of	magnitude	improvement	in	
systema7c	error	control	in	shape	measurements.	Other	big	WL	
programs	(LSST,	Euclid)	face	similar	issues.	
	
Improvements	also	needed	in	other	areas,	e.g.	photo-z	training	à	but	
that’s	another	talk	
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Systematic Errors 



The	Major	SystemaFc	Errors	
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Source	galaxies:	
• 	Redshios?	
• 	Intrinsic	alignments?	

Intervening	maqer:	
• 	Nonlinear	power	spectrum?	
• 	Baryonic	correcFons?	
• 	Higher-order	lensing	correcFons?	

Telescope/instrument:	
• 	Point	spread	funcFon?	
• 	Flats,	astrometry	…	?	
• 	Detector	non-ideali5es?	 Data	analysis:	

• 	Image	processing	algorithms?	
• 	Source	selecFon?	
• 	Shape	measurement?	



We	are	sensiFve	to	very	small	signals!	
•  Trying	to	measure	a	1%	signal	to	0.1%	accuracy.	

•  “Stage	IV”	addiFve	systemaFc	error	requirement	=	0.0003	in	
shear	

•  e.g.	for	WFIRST:	
–  “Typical”	galaxy	radius	=	1.8	pixels	
–  1	pixel	=	10	µm	
–  Change	in	radius	=	1.8	x	0.0003	x	10	µm	=	54	Å	

–  …	or	the	size	of	~8	lawce	cubes	in	HgCdTe!	

0.01× 0.001 ≈ 0.0003
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a	=	6.5	Å	



Layers	of	SystemaFc	Control	

14	

LAYER	 PROCESS	

1	 Eliminate	the	physics	causing	the	effect	(but	not	always	possible).	

2	 Develop	a	first-principles	model	(but	again,	not	always	possible).	

3	 Develop	an	empirical	model	based	on	stars	or	external	calibra@on	
data	(may	capture	mul@ple	pieces	of	physics	simultaneously).	

4	 Mask	affected	data	(if	a	small	number	of	pixels	are	affected,	e.g.	
persistence,	cosmic	rays	…).	

5	 Sta@s@cal	correc@ons	based	on	science	galaxies	(e.g.	de-trending	
with	respect	to	posi@on	on	focal	plane).	

6	 Cross-correla@ons	of	successive	passes	over	the	sky	at	different	roll	
angles	(@le	2x	per	filter,	3	shape	measurement	filters).	

Different	effects	may	be	more	amenable	to	mi5ga5on	at	different	layers.	
	

Want	to	avoid	premature	reliance	on	layers	5	and	(especially)	6	–	these	are	
there	if	1—4	are	not	sufficient,	or	when	(not	if)	unexpected	problems	arise.	



Some	consideraFons	
•  Read-out	architecture	different	from	CCDs:	

–  Every	pixel	is	(potenFally)	special,	including	its	own	amplifier!	
•  Compare	to	SDSS	(my	WL	experience)	–	drio	scan,	many	quanFFes	inherently	1D	
•  “Point	and	stare”	CCD	–	2D	array	but	only	a	few	amplifiers	

–  MulFple	reads	
•  WFIRST	can	download	~6	linear	combinaFons	per	pixel	per	exposure	

•  Very	sensiFve	to	environmental	perturbaFons	(e.g.	thermal)	
•  Charge	traps!	

–  symptoms	such	as	persistence,	reciprocity	failure,	…	

•  Some	CCD	“problems”	not	present	
–  Most	notably	charge	transfer	inefficiency	

•  (Maybe	the	biggest	worry?)	New	detectors	à	probably	many	
surprises	in	the	future!	
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Weird	Pixels	
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(chart	from	Bernie	Rauscher	–	these	are	from	H4RG	detectors)	

Would	not	use	these	for	science,	but	need	to	be	careful	as	masking	can	itself	
introduce	biases!	



Masking	bias	in	SDSS	simulaFons	
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Huff	et	al.	(2014)	

This	was	for	masking	bad	
columns	in	a	Sloan	CCD.	
	
Masking	paqerns	for	weird	pixels	
likely	not	so	severe	…	
	
but	requirements	are	much	
Fghter!	



ContribuFons	to	image	ellipFcity	
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Whisker	diagram	for	H2RG	at	
Caltech	Precision	Projector	Lab	
(Seshadri	et	al.	2013)	
	
	
	
Correlated	structure	is	present	
	
	



Individual	Pixel	Response	FuncFons	
•  Stars	are	bright,	galaxies	are	faint	

•  Stars	have	high	S/N	per	pixel	
–  Pixel	response	funcFons	differ	from	

one	pixel	to	another	
•  QE,	area,	centroids,	shapes,	higher	moments	

–  Not	visible	in	individual	galaxies	(at	S/
N=10	per	image,	care	most	about	mean	
behavior	on	>1	arcmin	scales)	

–  …	but	a	big	deal	for	PSF	stars	as	we	may	
be	interpolaFng	based	on	~1000	stars	
each	at	S/N~100	
•  This	is	where	the	Fghtest	requirements	on	

high	spaFal	frequency	flats,	etc.	will	come	
from	on	WFIRST!	
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Hardy	et	al.	(2014)	
SPIE	9154,	9154D-12	
H1RG,	5µm	cutoff	



Nonlinearity	effect	on	stars	
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A.	Plazas	Malagón	et	al.	(2016)	

	
Non-linearity	both:	
	
Changes	the	PSF	size	
	à	mulFplicaFve	shear	error	
	
Couples	to	aberraFons	to	
modify	PSF	ellipFcity	
à addiFve	shear	error	
	

β = 5×10−7“Nominal”	



Correlated	Noise	
•  Noise	correlaFons	imprinted	at	

mulFple	stages	in	the	readout	
chain	

•  Anisotropic	correlaFons	have	the	
same	symmetry	as	shear	and	are	
of	concern	for	weak	lensing.	

•  We	don’t	have	data	yet	for	
WFIRST	detectors	with	flight-like	
electronics.	

21	

Rauscher	(2015)	PASP	127:1144	
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Semi-analy@c	model	for	the	effects	of	correlated	noise	on	shape	measurement	

blue	=	semi-analyic	model	
red	=	simulaFon	

•  We	are	using	these	
models	to	set	
requirements	on	the	
knowledge	of	the	noise	
correlaFon	structure	



Inter-pixel	capacitance	(IPC)	
•  CapaciFve	coupling	between	

neighboring	pixels,	since	in	
NIR	detectors	the	pixels	are	
read	out	in	place.	

•  Part	of	the	effecFve	PSF	for	
signal,	but	not	for	noise.	

•  For	WFIRST,	will	have	to	know	
the	IPC	to	0.01%	on	scales	
down	to	~500	pixels	
–  or	absorb	any	errors	at	this	level	

into	ePSF	model	
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Q1	 Q2	 Q3	

K	=	IPC	kernel	

See	e.g.	Kannawadi	et	al.	(2016)	
H4RG	data	from	WFIRST	Project	Technology	Report	#4	



Persistence	
•  Pixels	in	NIR	detectors	show	excess	

current	following	exposure	to	a	
bright	source.	

•  Small	effect	as	a	fracFon	of	sFmulus,	
(in	modern	detectors)	but	of	
concern	due	to:	
–  High	precision	demanded	of	WFIRST	
–  Large	dynamic	range	between	science	

targets	(galaxies)	and	bright	stars	

•  What	effect	on	weak	lensing?	
–  Approach	thus	far	–	treat	unmasked	

persistence	as	a	correlated	noise	field.	

24	
H4RG	data	from	WFIRST	Project	Technology	Report	#4	
Linear	scale:	0	to	0.1%	of	full	well	from	t	=	150-300	s	aoer	8xFW	illuminaFon	



Persistence	from	Slews	
•  No	cold	shuqer	in	WFIRST,	so	detectors	see	a	“streak”	from	every	

bright	star	during	slews.	
–  Mask	the	worst	stars	(baseline:	<9th	mag)	and	accept	remaining	contaminaFon	

•  Semi-analyFc	esFmates	of	the	effect	were	completed	this	fall	
–  “Low”	and	“high”	roughly	correspond	to	regions	seen	on	previous	slide.	
–  Next	steps	are	to	opFmize	masking	algorithms	and	insert	slew	persistence	into	

pixel-level	simulaFons.	
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ACS	error	
(arcsec	rms	
per	axis)	

Masked	
pixel	

frac5on	

Systema5c	
shear	per	
component	

Masked	
pixel	

frac5on	

Systema5c	
shear	per	
component	

1.0! 0.16%! 3.4E-5! 0.68%! 8.6E-5!

2.0! 0.32%! 3.4E-5! 1.31%! 8.6E-5!

4.0! 0.62%! 3.4E-5! 2.58%! 8.6E-5!

Low	model	 High	model	



Summary	
•  A	weak	lensing	experiment	is	going	to	be	very	challenging,	

even	from	space.	
–  If	history	is	a	guide,	that	includes	some	systemaFcs	we	haven’t	

considered	yet.	
–  Aoer	you	get	rid	of	the	atmosphere,	the	detectors	are	perhaps	the	

scariest	part	of	the	problem.	

•  Much	recent	progress	on	WFIRST	detector	development	and	
characterizaFon.	
–  More	to	come;	the	formulaFon	science	team	received	its	first	H4RG	

test	data	this	year.	
–  Detector	characterizaFon	plans	and	calibraFon	plan	are	being	

formulated	now	–	decisions	made	in	the	next	1—2	years	will	be	
criFcal.	
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