Streaming readout Workshop SRO-XI 11/28,12/01,12/02

SPADI Alliance for Standardization of SRO DAQ in Japan Shinsuke OTA

Research Center for Nuclear Physics

for SPADI Alliance

Why do we need it?

Many types of experiments

- Not only the large-scale experiments but also the small-size experiments
- Variety of the beam species, the beam energies, the targets and the measured reaction products
- Variety of the lifetime of the experimental setup from one day to several months (or more)
- Frontend electronics : commercial and designed
- Localized DAQ software (and hardware) and analysis tools

Localized DAQ software

- RIBF : Babirl
 - coupled with NSCL DAQ, Narval, Midas, MBS, Mordicus ...
- RCNP : Tamidaq
 - Single system
- J-PARC : DAQ Middleware, HDDAQ,
 - Site by site
- How to maintain the system and how to develop the next generation system?

Hadron accelerators in Japan

J-PARC Z=0,1 MIP RCNP Z=0-30 0.1<β<0.7

HIMAC Z=0-54 0.01<β<0.7 RIBF Z=0-82 0.01<β<0.7

RHIC, LHC, EIC...

FRIB, ...

J-PARC : Hadron spectrometer

– Photon detector

- Gas detector

Overview of spectrometer system

- High-rate beam detectors
 - Scintillation Fiber Tracker
 - Fiber + MPPC array
 - Cherenkov Timing detector
 - Acrylic(PMMA) + MPPC + amplifier
- High-performance PID detectors
 - High timing-resolution TOF wall: RPC
 - Gas detector + amplifier
 - RICH & Beam RICH
 - Aerogel & Gas + MPPC/MPPC array
 - Threshold-type Cherenkov detector: Vth AC
 - Aerogel + MPPC array
- Large size detectors for scattered particles
 - Large size drift chambers
 - Gas detector + amplifier
 - Forward TOF wall
 - Plastic scintillator + PMT (+RPC)
 - Muon detector
 - **RPC (+Plastic scintillator + PMT)**

In-house (facility) : 0 person Core member in each groups : 5 persons (including detector developments)

Courtesy of K. Shirotori

RCNP: Grand RAIDEN and LAS

RIBF

In house : 2 person (for DAQ) Main apparatus : ~40 person (several groups)

Courtesy of H. Baba

Other devices

Active Target TPC 20000 ch 12 bit 50 MS/s => 12 Tbps 600 ch 12 bit 30MS/s => 0.2 Tbps

20000 ch 12 bit 30 MS/s => 7.2 Tbps

Courtesy of Baba

Each group has small number of core member. DAQ development is difficult.

Segmented Germanium ~2000 ch 16 bit 100 MS/s => 3.2 Tbps

From the slide of Y. Yamamoto (RCNP)

64ch 12bit 50MS/s ~ 40 Gbps 64ch 16bit 100MS/s ~ 100 Gbps

Feature of each facility

	RIBF	RCNP	J-PARC	
Accelerator	Cyclotron	Cyclotron	Synchrotron	
Beam	Heavy ion (Z<92)	Light to medium	Meson / Hadron	
Velocity (β)	0.1 < β < 0.7	0.1 < β < 0.7	β > 0.9	
Intensity	10 ⁷ cps	10 ¹⁰ -10 ¹² cps	10 ⁷ cps	
Measure beam?	Yes	No	Yes	
Reaction rate	10 ³ cps	10 ⁴ cps	10 ³ cps	
Detection rate	10 ⁶ cps	10 ⁴ cps	10 ⁶ cps	Beam/react.
Energy deposit	2 - >100000	2 - 3000	1	MIP = 1
# of Ch in Std Sys.	200	2500	25000*	* HD spectrometer
User DAQ	Yes	Yes	Rarely	
Life cycle	2 weeks	2 weeks	> 1 month	
	FR	В	EIC. sPHENIX	

Requirements

Common

- Similar detectors
- High throughput or compression in FEE
 - 10Gbps or more
- High compression or reduction
 - (1/10⁵) 10Tbps => 100 Mbps (Data store)
- Scalability
 - adaptive to 1 30000ch or more

Different

- Dynamic range
- Number of channels
- Hit frequency
- Requirement for trigger

Develop components

Already Exists?

- Many DAQ developments around NP and HEP field are ongoing
 - ALICE O2 system, EIC, GRETA, sPHENX, ...
- Streaming type DAQ and online filtering are good candidate and maybe only the solution to manage the increasing data flow.

A large thing will serve for a small one...? 大 (だい) は小 (しょう) をかねる?

Stating from the small, scalable system in cooperation with researchers from different institutes

What is it?

SPADI Alliance

Signal processing and data acquisition infrastructure alliance

History of SPADI Alliance

- 2022.05 Initiated
 - FY2022 Discussion for the implementation and FEE developments
- 2023.03 Town meeting in JPS and Annual workshop
- 2023.03 Test Implementation of S-DAQ at RCNP
- 2023.06 Test Implementation of S-DAQ at J-PARC
- 2023.06 Bylaws are issued
- 2023.07 First physics experiment with S-DAQ
- 2023.09 Laboratory exercise of DAQ implementation

Working groups and Task forces

WG1	WG2	WG3	WG4		
Frontend Electronics Streaming type Charge ASD board Voltage ASD board WF Digitizer board Control Firmware dev.	Clock synch. / Data Transfer General Clock Synch. High throughput Intra-board transfer	Acquisition software framework (NestDAQ +) Streaming type FairMQ-based Scalable DAQ Sampling, Time frame build, Event build, Monitoring Format	Event processing Acceleration using GPU/FPGA Zero suppression Calibration, Clustering, Tracking, PID,		
WG5 User Interface	WG6 Computing infrastr.	WG7 Packaging	Analysis		
Control, Monitor, Configure,	High throughput Large volume	Standalone system Popularization			
Trial with SlowDash	Power consumption Interconnect Networking	Market research User feedback	Trial with Artemis		

Scalable, Flexible, Zero-loss DAQ?

WG7 pakcaging

Timeline

	2022	2023	2024	2025	2026	2027	2028	2029	2030
FEE	Gas	МРРС							
TDC Streaming	Com	mon use							
Full Streaming	Stand	dard?		First stanc	lard pack	age			
Ubiquituos?				Upgrade	plan	Upgrad	ding		
TPC, Ge	Conce	pt, design	, develop		impl.	>			
Fast waveform QDC?	Board	d and firm	ware desig	gn					

What was achieved?

Activities in 1.5 years..

Recent Activities

- DAQ implementation test at RCNP and J-PARC
- Packaging of Streaming DAQ with HR-TDC
- Various FEE
- Many meeting to acquire the requirement in various experiments (>20)
- Monthly Meeting
- Training camp for young researchers and students

2023/03/02 - 03/04 (このときはビームが出なかったが)

100-200 kcps (40 times faster)

MPPC ASIC Board (YAENAMI 搭載)

FEE2

FEE3

High resolution FADC MIRA (Baba, Kitamura et al.)

QDC without delay cables Slope ADC ...

What is the next and in future?

Development items in next steps

- Time synchronization in FEE. (Modularity and scalability)
- FEE for Ge, Si, Fast charge signals (PMT, MPPC), TPC etc with time synchronization.
- Fast tracking, PID, Calibration, ...
- Many ongoing and future project in big collaborations like ALICE, EIC etc.
 - Exchange of knowledge, experiences and technologies
 - Collaborative development and common use ?

Summary and Outlook

- SPADI Alliance is initiated for a standardization of streaming DAQ
 - Many front-end electronics boards are being manufactured
 - Clock synchronization protocol
 - DAQ software framework
 - Analysis software framework
- We need the discussion among the community and other laboratory
 - Experiment group, Facility, Domestic, and International
- Many pioneering works exists we should learn from.

How can we proceed?