STREAMING READOUT WORKSHOP SRO-XI, 28 NOVEMBER 2023 TO 2 DECEMBER 2023, HILTON WAIKOLOA VILLAGE, HAWAII

sPHENIX TPC and Real-time Al

Outline: • sPHENIX TPC Year-1 Commissioning • Applications of Realtime AI (LDRD 23-048) • Summary

Jin Huang

Brookhaven National Lab

sphenix experiment

ABL

Completed first/commissioning run in 2023! See also: M. Purschke's talk Just now

sPHENIX Tracking Detectors

Streaming readout electronics

Plan to recording 10% p+p collisions in hybrid streaming DAQ \rightarrow 2-3 orders of magnitude increase in soft-HF statistics

sPHENIX streaming DAQ for tracker

Global Timing Module (NSLS II/sPHENIX) Receiving from RHIC RF low glitter clock source

MVTX RU, 200M ch INTT ROC, 400k ch ALPIDE (ALICE/sPHENIX), FPHX (PHENIX)

 TPC FEE, 160k ch
 BNL-712 / FELIX v2 x38 (ATLAS/sPHENIX)

 SAMPAv5 (ALICE/sPHENIX)
 FELIX Ref: 10.1109/tim.2019.2947972

sPHENIX TPC Data Fiber Cabling Plan, 1 of 24 sectors shown

Custom MTP-48 to MTP-12 breakout

sPHENIX TPC Data Fiber Cabling Plan, 1 of 24 sectors shown

Exp. disconnect 10x 1U space requested

MTP-QSFP breakout — QSFP MTP cable

One-way optical loss: 1.5dB

48F MTP Cable MTP coupler

QSFP Transceiver

sPHENIX TPC Data Fiber Cabling Plan, 1 of 24 sectors shown

Rack room layout

				Row 3, viewed outs	ide in				Man
							The last		
Assignment	RHIC infrastructure	LL1	EBDC TPC South	Patch/ TPC SOB South	BDC TPC North/Sou	Patch/ TPC SOB North	EBDC TPC South	EBDC Other	
Rack	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	1
	1	1	1	1 Fiber Patch MVTX	1	1 Fiber Patch INTT	1	1	
	2	2	2	2 Fiber Patch	2	2 Fiber Patch INTT	2	2	
	3	3	3	3 Fiber Patch	3	3 Fiber Patch	3		1
	4	4	4 EBDC MVTX 1	4 Fiber Patch	4 EBDC TPC S5	4 Fiber Patch	4 EPA		
	5	5	5	5 Fiber Patch TPC S1-4	5	5 Fiber Patch TPC N1-			
	6	6	6	6 Fiber Patch TPC S5-8	6	6 Fiber Patch TPC N5-8		6	
	7	7	7	7 Fiber Patch TPC S9-12	7	7 Fiber Patch TPC N9-12		7	
	8	8	8 EBDC MVTX 2	8	8 EBDC TPC S6	8	8 EBDC TPC N4	8 EBDC INTT1	
	9	9	9	9	9	9	9	9	
	10	10	10	10 SOB Spare	10	10 SOB TPOT	10	10	
	11	11	11	11	11	11	11	11	1
	12	12	12 EBDC MVTX 3	12 SOB S1	12 EBDC TPC S7	12 SOB N1	12 EBDC TPC N5	12 EBDC INTT2	
	13	13	13	13	13	13	13	13	
	14	14	14	14 SOB S2	14	14 SOB N2	14	14	
	15	15	15	15	15	15	15	15	
	16	16	16 EBDC MVTX 4	16 SOB S3	16 EBDC TPC S8	16 SOB N3	16 EBDC TPC N6	16 EBDC INTT3	
	17	17	17	17	17	17	17	17	
	18	18	18	18 SOB S4	18	18 SOB N4	18	18	
	19	19	19	19	19	19	19	19	
	20	20	20 EBDC MVTX 5	20 SOB S5	20 EBDC TPC S9	20 SOB N5	20 EBDC TPC N7	20 EBDC INTT4	
	21	21	21	21	21	21	21	21	
	22	22	22	22 SOB S6	22	22 SOB N6	22	22	
	23	23	23	23	23	23	23	23	
	24	24	24 EBDC MVTX 6	24 SOB S7	24 EBDC TPC S10	24 SOB N7	24 EBDC TPC N8	24 EBDC INTT5	
	25	25	25	25	25	25	25	25	
	26	26	26	26 SOB S8	26	26 SOB N8	26	26	
	27	27	27	27	27	27	27	27	
	28	28	28 EBDC TPC S1	28 SOB S9	28 EBDC TPC S11	28 SOB N9	28 EBDC TPC N9	28 EBDC INTT6	
	29	29	29	29	29	29	29	29	
	30	30	30	30 SOB S10	30	30 SOB N10	30	30	/
	31	31	31	31	31	31	31	31	
	32	32	32 EBDC TPC S2	32 SOB S11	32 EBDC TPC S12	32 SOB N11	32 EBDC TPC N10	32 EBD	
	33	33	33	33	33	33	33		/
	34	34	34	34 SOB S12	34	34 SOB N12	34		
	35	35	35	35	35	35	35		
	36	36	36 EBDC TPC S3	36 SOB Spare	36 EBDC TPC N1	36 SOB Spare	36 EBDC TPC	36 EBDC INTT8	
	37	37	37	37	37	37	37	37	
	38	38	38	38 SOB Spare	38	38 SOB Spare	38	38	
	39	39	39	39	39	39	39	39	
	40	40	40 EBDC TPC S4	40	40 EBDC TPC N2	40	40 EBDC TPC N12	40 EBDC Spare	
	41	41	41	41	41	41	41	41	
	42	42	42	42	42	42	42	42	

SPHENIX

sPHENIX Time Projection Chamber 100 Hz ZDC, MBD Prescale: 2, HV: 4.45 kV GEM, 45 kV CM, X-ing Angle: 2 mrad 2023-06-23, Run 10931 - EBDC03 reference frame 43 Au+Au sqrt(s_{NN})=200 GeV

Run23 AuAu collision data Taken in first few seconds after TPC in operating condition

Streaming readout status at sPHENIX

- All three sPHENIX tracking detector uses streaming readout
- Developed plan to take 10% streaming data for heavy flavor physics program commended by RHIC PAC.

RHIC PAC 2020 report

We commend sPHENIX for developing the continuous streaming readout option for the detector, which increases the amount of data that can be collected in Run-24 by orders of magnitude. In particular in the sector of open heavy flavor, this technique will give access to a set of qualitatively novel measurements that would otherwise not be accessible. Given the tight timeline for completing the RHIC physics program before construction of the EIC begins, this is a tremendous and highly welcome achievement.

Streaming-DAQ enabled scientific connection: e.g. gluon dynamics via heavy flavor transverse spin asym.

Universality test on gluon Sievers

ional Laboratory

Jin Huang <jihuang@bnl.gov>

sPHENIX Streaming data flow

SRO pipeline monitoring via TSDB 📥 + Grafana 🧿

FEE PCB temperature during first collision data taking Part of SRO control data stream

Data pipeline monitoring during the max throughput stress test at 7GBps for each PCIe EP \rightarrow 2.7Tbps FEE to server memory readout (without the limit of file logging)

ePIC streaming DAQ-computing See also: Jeff Landgraf's talk later today

Al in streaming readout DAQ

Main challenge: data reduction

- Traditional DAQ: triggering was the main method of data reduction, assisted by high level triggering/reconstruction, compression
- Streaming DAQ need to reduce data computationally: zero-suppression, feature building, lossy compression

Opportunities for Real-time AI

- Emphasize on reliable data reduction, applicable at each stages of streaming DAQ: <u>Front-end</u> <u>electronics</u>, <u>Readout Back-end</u>, <u>Online computing</u>
- Data quality monitoring, fast calibration/reconstruction/ feedback
 - Has many AI application too
 - Not focus of this talk, nonetheless important for NP experiments

Streaming DAQ stage 3: Online computing

- Online computing is an integral part of streaming DAQ
 - Blending the boundary of online/offline computing
- Al opportunities:
 - Lossy compression
 - Noise and background filtering
 - Higher level reconstruction
- Target hardware:
 - Traditional computing: CPU, GPU
 - Novel AI Accelerators

TPC Data Frames

Brookhaven

ional Laboratory

Busiest event in sPHENIX TPC 3D X-Y-Time time frame at 50Tbps prior to zero-suppression 10% central Au + Au collision with 170kHz pile up Data frame for 1/12 azimuth sector shown here

01

59

Jin Huang <jihuang@bnl.gov>

249

30

Lossy compression of data, noise filtering

Auto-encoder (AE) is a natural choice for self-supervised learning for lossy data compression and noise removal

Simple auto-encode neural network

Lossy compression of data, noise filtering

- Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction
- Same network architecture can be adopted with supervised learning to filter out noise: further data reduction, speed up reconstruction

CMS HGCal compression ASIC, [10.1109/TNS.2021.3087100, talk by Maximilian J Swiatlowski]

Bicephalous Convolutional Auto-Encoder (BCAE) and

input transform [Huang et al ICMLA21, DOI: 10.1109/ICMLA52953.2021.00179 arXiv:2111.05423]

- Input transform: fill in the zero-suppression gap and make ADC distribution much less steep
- Bicephalous decoder: +classification decoder to note the zero-suppressed ADC voxels and +noise voxels in TPC

Bicephalous Convolutional Auto-Encoder (BCAE) Segmentation output (mask)

[Huang et al ICMLA21, DOI: 10.1109/ICMLA52953.2021.00179 arXiv:2111.05423]

input

Brookhaven ational Laboratory

Comparison with existing algorithm

[Huang et al ICMLA21, DOI: 10.1109/ICMLA52953.2021.00179, arXiv:2111.05423]

Real-time speed optimization for BCAE

[Huang et al DRBSD9@SC23, DOI: 10.1145/3624062.3625127 arXiv:2310.15026], received paper award

Optimization of inference speed of BCAE while maintaining better MAE than first version:

- BCAE-2D: 3D convolution -> 2D convolution with 16 color channels
- BCAE-HT: smaller intermediate output channels, 1/20 in size for encoder
- NN use of half-precision float (16bit) operations

Novel AI Accelerators for streaming DAQ

- A new family of AI chips is emerging with non-von Neumann Architectures
 - Designed for NN computing, similarities to ML on FPGA
 - Massive on-chip activation/weight storage on sRAM
 - Good integration with popular AI tools
 - Energy efficient and high throughput
- Significant throughput gain with testing of BCAE on Graphcore IPUs, a Dataflow Architectures processor for AI application

Mapped to Cerebras wafer (placed and routed)

[GraphCore Web, <u>link]</u>

Jin Huang <jihuang@bnl.gov{Cerebras Compiler Docspaink]

Summary

Extra information

Jin Huang <jihuang@bnl.gov>

Nuclear collider experiments: unique real-time system challenges leads to streaming DAQ

	EIC	RHIC	LHC → HL-LHC	
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$	
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV	
Bunch spacing	10 ns	100 ns	25 ns	
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} ightarrow 10^{35} \mathrm{cm^{-2} s^{-1}}$	
x-N cross section	50 µb	40 mb	80 mb	
Top collision rate	500 kHz	10 MHz	1-6 GHz	
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6	
Charged particle rate	4M N _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s	

- Signal data rate is moderate \rightarrow possible to streaming recording all collision signal
- But events are precious and have diverse topology \rightarrow hard to trigger on all process
- Background and systematic control is crucial → avoiding a trigger bias; reliable data reduction

RHIC transition to the Electron Ion Collider (EIC) Just had a successful CD3-A review, Science Phase in 2030+

Performance comparison

better 3D BCAE

model	MAE↓	PSNR ↑	Precision 1	Recall ↑	Encoder size↓	Compr. Ratio \downarrow
BCAE	0.198	9.923	0.878	0.861	201.7k	27.041
BCAE-2D	0.152	11.726	0.906	0.907	169.0k	31.125
BCAE++	0.112	14.325	0.934	0.936	226.2k	31.125
BCAE-HT	0.138	12.376	0.916	0.915	9.8k	31.125

From BCAE to BCAE-HT

- 1. 3D convolution
- 2. Pad (16, 192, 249) to (16, 192, 256) for easy halving and an increased compression ratio
- 3. Remove normalization
- 4. Much smaller intermediate output channels for higher throughput

- Slightly better reconstruction performance
- Super small model size
- Higher throughput

Performance comparison

Throughput comparison

two computing modes

- Full: encode with float 32, save code as float 16, decode with float 32
- Half: encode with float 16, save code as float 16, decode with float 32

model	model mode		precision	recall	
RCAEDD	Full	0.151937	0.905469	0.906916	
DCAE-2D	Half	0.151965	0.905326	0.907 <mark>050</mark>	
DCAE	Full	0.112 <mark>3</mark> 47	0.933 <mark>8</mark> 17	0.935779	
DCAE++	Half	0.112 <mark>3</mark> 42	0.933 <mark>8</mark> 52	0.935741	
	Full	0.138 <mark>443</mark>	0.915 <mark>8</mark> 91	0.914 <mark>5</mark> 62	
DCAL-III	Half	0.138441	0.915780	0.914701	

Why don't we have the same speedup here?

Throughput comparison

two computing modes

Brookhaven National Laboratory

Why the Lack of Speedup

National Laboratory

Jin Huang <jihuang@bnl.gov>

Brookhaven National Laboratory

Results from Bicephalous AE with transform [arXiv:2111.05423]

Brookhaven National Laboratory

Jin Huang <jihuang@bnl.gov>

Compressibility check: thanks to suggestion from Brett!

The lossy-compressed code is hardly compressible further losslessly

