Belle II DAQ and possibility of SRO

S. YAMADA (KEK)

Introduction

The Belle II experiment

 \succ Search for new physics beyond the Standard Model(SM) via high precision measurement with high statistics samples of B/D/tau decays.

Measure rare decays and search for the discrepancy from SM

➤ The precision of some Belle/Babar results showing tensions with SM is statistically limited.

- Precise Measurement of Unitarity Triangle
- Study of exotic hadrons

etc...

SuperKEKB accelerator

 Target of the integrated luminosity : 50 ab⁻¹
(cf. 1ab⁻¹ @ Belle experiment)

History of Belle II operation

<u> Phase I : (2016 Feb.-Jun.)</u>

Accelerator commissioning w/o final focusing magnets w/o the Belle II detector

Phase II : (2018Feb.-Jul)

- Accelerator commissioning and physics run
- with the Belle II detector except for vertex subdetectors

Phase III : (2019Mar- 2022July)

Physics run with the full Belle II detector

LS1(Long Shutdown 1) : (2022July – 2024Jan.)

Various upgrades and improvements of both the accelerator and detector

Run 2 : (2024Feb.-)

Resume beam operation

3

Belle II DAQ system

Belle II DAQ system

Belle II

7

Belle II Trigger and timing distribution(TTD) system

- Tree structure of distribution modules(FTSW)
 - Distribute trigger and timing to FEE(readout system)
 - Readout system receives trigger info. used for consistency check with data from FEE
 - Collects busy or error signal from FEE and readout system to pause sending a trigger.
 - Custom protocol : Data rate : 254Mbps

BUSY handshake between Trigger-Timing Distribution(TTD) and readout system

- To avoid buffer flow in readout board, BUSY signal is sent to FTSW(Fast Timing SWitch module) from a readout board.
- FEE continues sending data
- When usage of FIFO on readout board becomes almost full, busy signal is sent to FTSW module.
- The FTSW module stop sending triggers (-> dead time but no overflow)

9

Readout protocol from frontend electronics

Belle2Link : (D. Sun et. all, hysics Procedia Volume 37, 2012, pp. 1933-1939)

Unified high speed link which connects Front-End Electronics (FEE) and DAQ system for signal with data transmission based on Rocket I/O

FEE side : Functions for I/F with FEE and Trigger Timing Distribution on FPGA

DAQ side : FGPA on a readout board as a data receiver

Upgrade of the Belle II readout system in LS1

Motivation

- > Difficulty in maintenance throughout the entire Belle-II experiment period
- Upgrade the current bottlenecks in old COPPER readout board(CPU, PCIbus, GigabitEthernet etc.)

Event-building scheme in the firmware of readout board

- Before LS1, event-building was performed in PCIe40 FPGA on-chip memory.
- > The new scheme has been developed in LS1 by using PC server memory for event-building.
 - Larger memory increases the room to wait for events from FEEs before buffer-full.

- Throughput up to ROPC : FEE->PCIe40->ROPC software : 3.4GB/s
 - Note : Data were not sent to HLT in this measurement
- In a high-rate test including data-transfer to HLT, 800MB/s/ROPC at 32kHz was achieved.
 - Trigger holdoff is the current bottleneck.

<u>High level trigger</u>

Functions

- 1. Event reconstruction from data of all detectors except for PXD
- 2. Reconstruction software developed for offline analysis is also used in HLT
- 3. For trigger selection, physics event selection is applied. (rate reduction : 1/3)
- 4. ROI information from reconstructed SVD tracks is fed to PXD for data size reduction

Reconstruction for online event-selection requires large CPU power \rightarrow parallel processing on large number of CPUs

13

Possibility of streaming readout @ Belle II

Motivations for SRO at Belle II

L1 Trigger Menu for Low Multiplicity Physics BELLE2-NOTE-PH-2015-011

Processes	T1:2trk	T2:1trk1mu	T3:1mu	T4:1trk1c	T1:bbc	T2:3g	T3:3t	Combine
$B^0 \overline{B}{}^0$	-	96.5	50.0	82.9	44.8	93.4	99.4	> 99.9
B^+B^-	-	96.5	51.7	84.1	46.2	92.6	99.5	> 99.9
ccbar		96.8	65.9	89.4	52.1	84.8	98.0	> 99.9
uds	-	96.5	68.0	89.1	50.0	81.1	97.2	> 99.9

TABLE VIII: Efficiencies and Cross section after triggers

- Already very high efficiency for hadronic events in Belle II
- What kind of events can benefit from triggerless DAQ/software trigger ?
 - Low multiplicity event for lower energy
 - Displaced vertex

Single Photon Search

- Search for massive Dark Photon, A', which mixes with Standard Model photon.
- Detector signature is a single initial-state radiation photon.

- Single photon trigger is crucial:
 - Maintaining acceptable rate challenging due to beam-induced backgrounds

DESY. Savino Longo (savino.longo@desy.de)

What needs to be done in triggerless DAQ : data-format

Data format

- No event #
 - Instead, time counter from FTSW will be used (timestamp)
- It would be good to have coarse time-stamp and fine timestamp

What needs to be done in triggerless DAQ : sorting

- Time sorting
 - Instead of event-building, data from different FEEs needs to be sorted for software trigger.

Probably, this part is also resource-consuming. It will be useful to use FPGA or GPU for the sorting. It could affect the load of software trigger.

What needs to be done in triggerless DAQ (3)

- Online event selection
- How to set the trigger-window is complicated
- Check every bunch crossing ? :
 - LHCb max. 40MHz(=25ns)
 - Belle II 254MHz(=4ns)
 - Smaller than timing resolution of some sub-detectors
- Set a certain trigger-window which has some overlap

Time-window size for each sub-detector depends on timing resolution of the sensor.

<u>Three bottlenecks for trigger less DAQ</u>

Since estimation for triggerless DAQ is not straightforward 100kHz trigger rate is considered...

	# of ROPC (COPPER)	dataflow of the current system at 30kHz by just scaling data on May18.2021 [MB/s]	100kHz (3.3 x 30kHz) [MB/s]	# of ROPC (PCIe40)	100kHz /PCIe40 [MB/s]†
SVD	9	3640	12133	5	2427
CDC	9	613	2043	7	292
ТОР	3	208	693	2	347
ARICH	6	375	1250	2	625
ECL	10	601	2003	3	668
KLM	3	44.5	148	1	148
TRG	3	137	457	1	457
Total	43	5619	18728	21	

- Event size will increase as luminosity does.
 - In the table, we only account for the increase in SVD event size(3.6 times increase at the designed luminosity).

(2) + (3) + (4) our etter 40 firm ware on ROPC

Network bandwidth

100kHz

/PCle40

The current performance estimation with 13 HLT units

Performance estimation of HLT reconstruction software

with 13 units + release 07

- Thanks to the new units and tuning of the reconstruction software, 20kHz processing power is expected with 13 HLT units
- However, this part is still one of the main bottlenecks if we adopt triggerless DAQ.

Schedule of upgrade of HLT units (# of CPU cores)

- > Together with the tuning of reconstruction software, # of HLT units will be increased.
- > It is a scalable system because event-building is done before HLT.
 - Increase # of HLT units and different events can be processed in parallel.

Status of each sub-detector's front-end electronics

Pixel detector(PXD)

- Rolling shutter readout: frame 20 us = 50 kHz (this is "trigger-less")
- Data is continuously sampled and written to FEE memory
- Classic "triggering":
 - Level-1 triggers is fed to FEE and tell which part of memory to send out
 - All data can (in principle) be read out at 50kHz (continuous readout) but the bandwidth of FEE is the limit.
 - Capable of handling up to 1.5-2% occupancy of the pixel sensors. (0.1% at 2021 run)

Data structure in FEE to extract events with L1 trigger info.

25

Silicon Vertex Detector(SVD)

- APV25 chip on the silicon strip sensor provides analog signals sampled for 128-channels
- Data transmission from APV25 to FEE takes 26.5usec for 6samples(0.19us window@32MHz sampling clock).
 - Only 0.7% of waveform can be sent if we remove Level-1 trigger.
- There is an upgrade plan to replace both PXD and SVD detectors with pixel sensors in the SuperKEKB Long Shutdown 2 (around 2028, but not yet determined)

Central Drift Chamber(CDC)

- Hit rate : around 80kHz per wire is expected at inner layers
 - 48ch/FEE board
- Ihit data size : ch ID, ADC, TDC -> about 10bytes/hit
 - Iboard x 48ch => 40MB/s

Current FEE

Limitation of the current FEE

- Throughput: 1 Gbps via SFP
- acceptable latency: <8 us

Upgraded FEE (in LS2?)

Possible future improvements

• throughput: 4x 10 Gbps

Time of Propagation detector for PID(TOP)

- Multi-channel-plate PMTs (MCP PMTs) are used for Cherenkov photon detection.
- Hit rate of the PMT due to beam background : 3MHz
- 128ch per link to a readout board.

Current hit rate : trigger rate 10 kHz, ~30 hits/slot \Rightarrow 300 kHz digitization of hits Triggerless scheme : 3 MHz/PMT, 32 PMTs/slot \Rightarrow 96 MHz digitization of hits

Processing speed in FEE could be the bottleneck

Aerogel Ring Imaging Cherenkov detector(ARICH)

- HAPD(Hybrid Avalanche Photo-Detector) is used to detect Cherencov ring in aerogel.
- Only hit information(0 or 1) is sent downstream.
- 10triggers / 26.4us is the limitation x 500ns time window
- → 380kHz is the limit

Belle II

→ 500ns x 380kHz = 19% of the time can be covered. This throughput is the limitation.

Since most of the data are overhead, the change of format could reduce the throughput.

CH Data in Suppressed Mode

* If a ch has no hit data (Zero), its data is not transmitted.

Electromagnetic Calorimeter(ECL)

- Front-end electronics(ShaperDSP) board samples waveform with 2MHz and waveform fit is performed to get timing and energy.
- This data processing on a FEE board is one of the bottlenecks of the ECL readout.

ShaperDSP FPGA processor ADC data cycle buffer TRG TRG FIFO 290 mks (16 ev.) ADC data 16 ch. TKN ADC buffer samples write addr SCK waddr generator wclk

Klong and muon detector(KLM)

The sub-detector consists of Resistive Plate Counter(RPC) and scintillator bars

Throughput : Cumulative hit-rate is around O(1) MHz 1hit = 8bytes x 32 links are not so large.

Bottleneck : Digitization and waveform sampling is the bottleneck for scintillator waveform readout. 24us/event. -> 40kHz trigger rate

Most likely a "triggerless" mode on would use trigger bits only (no waveform) or would require new FEE.

Partial SRO for Belle II

- Since each sub-detector has its own FEE hardware and firmware, they will each need a lot of upgrade work to replace them at the same time.
- Starting from adding another data path for some sub-detectors for streaming readout would be a realistic option. (e.g. ECL+CDC for low multiplicity and displaced vertex events)

<u>Summary</u>

In the Belle II experiment, the DAQ system needs to be able to handle data-flow with a few tens of times larger luminosity than the former Belle experiment.

- It has been operational in physics runs since 2019 and we are currently in Long Shutdown 1. The next physics Run will start in February 2024.
- Readout system
 - Old COPPER-board based system was replaced with PCIe40 recently and the throughput has been improved.
- High-level trigger
 - Adding CPUs to increase processing power. Currently 20kHz trigger rate can be processed.
- Currently, Belle II DAQ relies on hardware trigger to select events. For the SRO @ Belle II DAQ, improvement of throughput in FEE and HLT is necessary. For FEEs, staging approach to have both data paths with L1 trigger and some sub-detectors w/ streaming readout is realistic.

