Streaming Readout for the ePIC DAQ

ePIC Electronics & DAQ WG Conveners: Fernando Barbosa, Jin Huang, Jeff Landgraf

ePI

Outline

- Introduction to the EIC and to the ePIC detector
- Streaming in the context of the ePIC DAQ
- Overview of the ePIC DAQ system components
- Channel counts and data volume expectations
- Status of the development
 - ASICs
 - DAQ system components
 - DAQ computing
- Connection to ePIC Computing
- Summary

The Electron Ion Collider

- To be built at Brookhaven National Laboratory on Long Island, NY in partnership with JLAB
- CD-3A review just held, completion scheduled for early 2030s
- Collides electron/ion beams and polarized electron/proton beams
 - Electron beam energy up to 18 GeV
 - Proton beam energy 41-275 GeV
 - Ion beam energy 41-110 GeV / nucleon
- 1160 Bunches arriving at 98.5MHz
 - Maximum interaction rates ~500kHz
 - Expect low multiplicity events
- Key DAQ requirements
 - High Rates: ~500kHz + backgrounds
 - Low Noise
 - Resolve collisions to bunch to understand Polarization

12/1/2023

The ePIC Detector

- ePIC is a large international collaboration and works in partnership with the EIC project (6.10 L2 Control Account)
 - 171 institutions, 24 countries, 500+ participants
- 24 Detectors with multiple technologies
 - MAPS (~16 Billion Pixel)
 - AC-LGAD (~10 Million Channels)
 - SiPM (~1M channels)
 - HRPPDs (~70k Channels)
 - MCP-PMT (~70k channels)
- Detector spans about 80m
 - Central detector ~4m
 - Far backward detectors
 - Far forward detectors

The ePIC Detector

- Central detector has 4π , but asymmetric coverage for
 - Hadronic and EM Calorimetry
 - Tracking
 - PID

Subsystem Collaborations

12/1/2023

Streaming in ePIC

ePIC DAQ

Definition of streaming is "No L0 trigger"

- > No system wide deadtime in normal operation
 - Detectors *will* have minimum double hit times for channels or modules, as well as throughput limitations.
- Collaboration should have the full ability to make data selection cuts on the widest possible criteria
 - · Full flexibility for event selection
 - · As full flexibility for data selection as possible
 - · As full background characterization as possible
- > But subject to an overall throughput budget of ~100Gb/sec

ePIC Streaming will include

- Capabilities for software triggering
- Capabilities for hardware triggering
- Capability for flow control
- > Zero suppression & aggregation within data packets

ePIC Computing

Definition of streaming is "Process data as it arrives"

- > Physics event selection and tagging
- Fast Analysis (~3 weeks not months or years) using automation of calibration and reconstruction.
 - Fast understanding of operations needs
 - Fast understanding of calibration
 - · Fast publication
- Distributed analysis
- > Efficient use of diverse architectures (eg. Support for GPU)
- > Efficient use of diverse software (eg. AI)
- > Incorporate worldwide computing facility contributions

Overlap between DAQ and computing

- Automation of Calibrations
- > QA and monitoring
- > Consistent schemes and language for managing data and metadata
- Event Selection and Tagging

12/1/2023

EIC Streaming DAQ/Computing Architecture

Bunch Crossing ~ 10.2 ns/98.5 MHz Interaction Rate ~ 2 us/500 kHz Low occupancy

12/1/2023

12/1/2023

Detector			Channels		RDO	Fiber	DAM	Data	Data	
Group	MAPS	PS AC-LGAD <u>SIPM/PMT</u> MPGD HRPPD					Volume (RDO) (Gb/s)	(To Tape) (Gb/s)		
Tracking (MAPS)	16B					400	800	17	26	26
Tracking (MPGD)				202k		118	236	5	1	1
Calorimeters	500M		104k			451	1132	19	502	28
Far Forward	300M	2.6M	170k			178	492	8	15	8
Far Backward	82M		2k			50	100	4	150	1
PID (TOF)		7.8M				500	1500	17	31	1
PID Cherenkov			320k		140k	1283	2566	30	1275	32
TOTAL	16.9B	10.4M	596k	202k	140k	2980	6826	100	2,000	96

12/1/2023

12/1/2023

Detector Group	Data Filt	ering	Channele			PDO	Eibor	DAM	Data Volume (RDO) (Gb/s)	Data Volume (To Tape) (Gb/s)
Tracking (MAPS)	Cluster finding accounts for the balance of the calculated noise reduction, 17 26 26 26									
Tracking (MPGD)	and for the	e reduced si	gnal data vo	olume.				5	1	1
Calorimeters	• Additional methods are being considered including AI/MI techniques for 19 502 28									
Far Forward	pattern recognition and/or data compression									
Far Backward								4	150	1
PID (TOF)	These fun	These functions will be performed in the DAM boards and the Online 17 31 1								
PID Cherenkov	computing	Iam	SLOR		1.101	1200	2500	30	1275	32
TOTAL	16.9B	10.4M	596k	202k	140k	2980	6826	100	2,000	96
Summary		W	Copper	RDO Fib	er Date	PCI/E	th	Readout	Eth	
100% Occupancy	27.5-1760 Pb/sec	FEB				Aggregate		Computer 96 Gb/sec		
100% Occupancy Aggreg	27.5-1760 Pb/sec	2.0 Tb/sec				Aggregate Collision S	ignal	Computer 96 Gb/set 38 Gb/set		
100% Occupancy Aggreg. Noise	27.5-1760 Pb/sec ate	2.0 Tb/sec 1.6 Tb /sec				Aggregate Collision S Synchrotro	ignal n Rad	Computer 96 Gb/sec 38 Gb/sec .01 Gb/se		
100% Occupancy Aggreg Noise Signal fr Backgro	27.5-1760 Pb/sec ate	2.0 Tb/sec 1.6 Tb /sec 400 Gb / sec				Aggregate Collision S Synchrotro Electron Br	ignal n Rad	Computer 96 Gb/sec 38 Gb/sec 01 Gb/sec 22 Gb/sec		
100% Occupancy Aggreg. Noise Signal fr Backgro	27.5-1760 Pb/sec ate	2.0 Tb/sec 1.6 Tb /sec 400 Gb / sec				Aggregate Collision S Synchrotro Electron Be Hadron Be	ignal n Rad eam am	Computer 96 Gb/sec 38 Gb/sec .01 Gb/sec 22 Gb/sec 4 Gb/sec		

12/1/2023

Detector			Channels	RDO	Fiber	DAM	Data	Data		
Group	MAPS	AC-LGAD	SiPM/PMT	MPGD	HRPPD				Volume (RDO) (Gb/s)	Volume (To Tape) (Gb/s)
Tracking (MAP	5) 16B					400	800	17	26	26
Tracking (MPG	D)			202k		118	236	5	1	1
Calorimeters	500M		104k			451	1132	19	502	28
Far Forward	300M	2.6M	170k			178	492	8	15	8
Car Dackward	0211	_	50	100	4	150	1			
fter onli	ne process	ing we e	expect r	oughly	equal	00	1500	17	31	1
ontributions from collision hits, beam background							2566	30	1275	32
					-	2.2		400	2 000	00
its, and	noise.					80	6826	100	2,000	96
its, and Summa	noise. ry of Data F Detector 27.5-1760	IOW FEB	Copper	RDO Fib		PCI/E	6826	Readout Computer	Eth	96
its, and Summa	noise. ry of Data F Detector 27.5-1760 Pb/sec	IOW FEB	Copper	RDO	er DAN	Aggregate	6826	Readout Computer 96 Gb/see	Eth	96
its, and Summa ^{100%} Occupancy	noise. ry of Data F Detector 27.5-1760 Pb/sec	OW FEB	Copper	RDO		Aggregate Collision S	6826	Readout Computer 96 Gb/sec 38 Gb/sec	Eth	96
its, and Summa 100% Occupancy Nois Sint Sint Sint Sint Sint Sint Sint Sint	noise. ry of Data F Detector 27.5-1760 Pb/sec regate re al from Physics +	OW FEB	Copper	RDO	er DAN	Aggregate Collision S Synchrotro	ignal n Rad	Readout Computer 96 Gb/see 38 Gb/sec .01 Gb/se	2,000 Eth	96
its, and Summa 100% Occupancy Noi: Sign Bac	noise. ry of Data F Detector 27.5-1760 Pb/sec regate regate lal from Physics + kground	OW FEB 2.0 Tb/sec 1.6 Tb /sec 400 Gb / sec	Copper	RDO Fib		Aggregate Collision S Synchrotro Electron Be	6826	Readout Computer 96 Gb/sec 38 Gb/sec .01 Gb/sec 22 Gb/sec	Eth	96
its, and Summa 100% Occupancy Noia Sign Bac	noise. ry of Data F Detector 27.5-1760 Pb/sec regate regate reference al from Physics + kground	OW FEB 2.0 Tb/sec 1.6 Tb /sec 400 Gb / sec	Copper	RDO Fib	er DAN	Aggregate Collision S Synchrotro Electron Be Hadron Be	6826 Ignal n Rad eam am	Readout Computer 96 Gb/see 38 Gb/see .01 Gb/se 22 Gb/sec 4 Gb/sec	Eth	96

12/1/2023

System Component Status: ASIC development

• ASIC development is funded through through eRD109 (F. Barbosa Saturday 4pm)

System Component Status: RDO and GTU

The hardware development of the RDO and GTU is currently focused on the development of the low-level timing protocol for achieving the 5ps time resolution requirement. We prefer using a reconstructed clock to avoid extra fiber

- Currently 3 options under evaluation
 - Custom protocol
 - GBT using fpga
 - Dedicated timing fiber
 - These options are being evaluated using FPGA devkits (See Jo Schambach's talk)
- Data volume studies need to be extended to the channel level in to study detailed rates needed by components
- Integration is also being discussed. Power, cooling, space, radiation needs, and cable lengths need to be fully specified and integrated for next year's TDR.
 - To this end we have provided a mocked up physical design and power estimate for the RDOs
 - Assume Artix Ultrascale+,2.5 x 2.5 inches for common components + connector space is our guidance, and 2-5 Watts power

System Component Status: DAM

DAM Candidate

FELIX FLX-182 from Atlas / Omega group a BNL

FPGA: Xilinx Versal Prime

- PCIe Gen 4 x16: PL and CPM compatible
- 24 FireFly links with 3 possible configurations
 - 24 links@25 Gb/s
 - 24 links @10 Gb/s (CERN-B-Y12)
 - 12 links @25 Gb/s +12 links @10 Gb/s
- 4 Firefly Links with 2 possible configurations
 - LTI interface
 - 100GbE
- Electrical Signals on front panel
 3 input and 3 output
- 1 DDR Mini-UDIMM
- USB-JTAG/USB-UART
- Dual core ARM Cortex SoC
- Power usage is 133W external
- Can be implemented as stand alone device

We have these in hand and are getting familiar with the board

Next version has 48 link capability available in 2024

12/1/2023

Optical Protocol Requirements

The High-Level Optical Protocol

- Defines the information content of the data flow between the GTU, RDO, and DAM boards
- Optical Protocol Requirements
 - Timing
 - <=5ps Resolution for hi-res Detectors
 - <=100ps for All detectors
 - Phase stability on power cycle
 - · Configuration of RDO firmware and ASIC parameters
 - Mode for configuring RDO
 - Mode for ASIC configuration passthrough
 - Real-Time Command / Control
 - Define bunch crossing counter
 - Define time frames
 - Trigger Information
 - Mark or initiate calibration events
 - · Potential debug or fallback triggered modes
 - Formatting information
 - Flow Control
 - · RDOs need to mark potential dropped data
 - · Need the capability of applying global busy
 - Slow Control Monitoring from ASICs/FEBs (e.g. Temperature monitoring)
 - Data Transfer (>=10Gb/s per RDO)

DAQ Local Computing: Time frames

- Time Frames (~1ms)
 - Up to ~500 events per Frame
 - ~10MB data per Frame
 - ~2.0MB input per DAM
 - ~100kB output per DAM
- · Routing data
- Formatting data
- · Processing data
 - Cluster finding
 - Software triggering
 - Sanity Checkers
 - QA Monitoring
 - Metadata
 - Slow controls information
 - · Building time frames
- Scalers / continuously running DAQ components

DAQ Computing: Data Format Case Study (H2GCROC3A)

This is the data format of a prototype ASIC – not the final ASIC, my points are conceptual! (N. Nowitski, Sat 4:30pm)

- Granularity of readout is half chip (36 channels).
- Data is 3x10 bit words per sample, but the meaning of the three words depends on the Tc, Tp flags
- Data is NOT pedestal subtracted, rather the pedestals are shifted via calibration to the same value
- Can configure fixed # time samples read out
- Can configure to disable certain Tc/Tp
 Combinations

Potential interesting data:

- Full ASIC data (despite containing up to 35 channels of data without hits) {RAW}
- Channels without hits removed, but containing n samples for channels hit {CHANNEL}
- Channels with samples suppressed and only TOA/TOT information {TOATOT}
- Processed TOA/TOT information improved using sample information, but without saving samples {ENHANCED}

information

Suppress Banks in some timeframes:

/TF#/NHCAL/DAM01/RAW	(1 in 1000)
/TF#/NHCAL/DAM01/CHANNEL	(1 in 10)
/TF#/NHCAL/DAM01/TOATOT	(1 in 10)
/TF#/NHCAL/DAM01/ENHANCED	(always)

Implications for data formats & readers

- Generic named data navigation
- > Detailed bank reader plugins

Boundary between Online and Offline

- Streaming RO computing model talk(M. Diefenthaler, Saturday 11:30)
- The streaming architecture allows for some blurring of the offline and online processing (QA/ Monitoring/Calibrations)
- Require an interface to allow sharing of code between offline / online processing
- Local buffering (Echelon 0) provides elasticity in the transfer of data to computing facilities
- Offline buffering (Echelon 1) will allow several weeks for calibration and reconstruction.

12/1/2023

Summary

- We have given an overview of the planned ePIC DAQ system
- Described how the streaming DAQ model fits into the design of the ePIC DAQ
- Overview of the ePIC DAQ system components and the status of their development
- We are still in the early stages of constructing the DAQ system, if you are interested in contributing:

Mailing list:https://lists.bnl.gov/mailman/admin/eic-projdet-daq-lIndico page:https://indico.bnl.gov/category/409/

Questions?

12/1/2023

Back-up slides

Detector System	Channels	RDO	Gb/s (RDO)	Gb/s (Tape)	DAM Boards	Readout Technology	Notes
Si Tracking: 3 vertex layers, 2 sagitta layers, 5 backward disks, 5 forward disks	7 m^2 16B pixels 5,200 MAPS sensors	400	26	26	17	MAPS: Several flavors: curved its-3 sensors for vertex Its-2 staves / w improvements	Fiber count limited by Artix Transceivers
MPGD tracking: Electron Endcap Hadron Endcap Inner Barrel Outer Barrel	16k 16k 30k 140k	8 8 30 72	1	.2	5	uRWELL / SALSA uRWELL / SALSA MicroMegas / SALSA uRWELL / SALSA	64 Channels/Salsa, up to 8 Salsa / FEB&RDO 256 ch/FEB for MM 512 ch/FEB for uRWELL
Forward Calorimeters: LFHCAL HCAL insert* ECAL W/SciFi Barrel Calorimeters: HCAL ECAL SciFi/PB ECAL ASTROPIX Backward Calorimeters: NHCAL ECAL (PWO)	63,280 8k 16,000 7680 5,760 500M pixels 3,256 2852	74 9 64 9 32 230 18 12	502	28	19	SiPM / HG2CROC SiPM / HG2CROC SiPM / Discrete SiPM / HG2CROC SiPM / HG2CROC Astropix SiPM / HG2CROC SiPM / Discrete	Assume HGCROC 56 ch * 16 ASIC/RDO = 896 ch/RDO 32 ch/FEB, 16 FEB/RDO estimate, 8 FEB/RDO conserve. HCAL 1536x5 *HCAL insert not in baseline Assume similar structure to its-2 but with sensors with 250k pixels for RDO calculation. 24 ch/feb, 8 RDO estimate, 23 RDO conservative
Far Forward: B0: 3 MAPS layers 1 or 2 AC-LGAD layer 2 Roman Pots 2 Off Momentum ZDC: Crystal Calorimeter 32 Silicon pad layer 4 silicon pixel layers 2 boxes scintillator	300M pixel 1M 1M (4 x 135k layers x 2 dets) 640k (4 x 80k layers x 2 dets) 400 11,520 160k 72	10 30 64 42 10 10 10 2	15	8	8	MAPS AC-LGAG / EICROC AC-LGAD / EICROC AC-LGAD / EICROC APD HGCROC as per ALICE FoCal-E	3x20cmx20cm 600 [^] cm layers (1 or 2 layers) 13 x 26cm layers 9.6 x 22.4cm layers There are alternatives for AC-LGAD using MAPS and low channel count DC-LGAD timing layers
Far Backward: Low Q Tagger 1 Low Q Tagger 2 Low Q Tagger 1+2 Cal 2 x Lumi PS Calorimeter Lumi PS tracker	1.3M pixels 480k pixels 700 1425/75 80M pixels	12 12 1 1 24	150	1	4	Timepix4 Timepix4 (SiPM/HG2CROC) / (PMT/FLASH) Timepix4	
PID-TOF: Barrel Endcap	2.2M 5.6 M	288 212	31	1	17	AC-LGAD / EICROC (strip) AC-LGAD / EICROC (pixel)	bTOF 128 ch/ASIC, 64 ASIC/RDO eTOF 1024 pixel/ASIC, 24-48 ASIC/RDO (41 ave)
PID-Cherenkov: dRICH pfRICH DIRC	317,952 69,632 69,632	1242 17 24	1240 24 11	13.5 12.5 6	28 1 1	SiPM / ALCOR HRPPD / EICROC (strip or pixel) HRPPD / EICROC (strip or pixel)	Worse case after radiation. Includes 30% timing window. Requires further data volume reduction software trigger

Design Criteria for High Level Data Format

- Low overhead
- ➢ Generic
 - > The file should have the structure of a read-only file system with banks taking part of files
 - Identification of banks by name (or by ID)
 - Bank Names or IDs should be maintained in an external database with plugin information for data bank decoding
- No backtracking while writing
 - > No sizes at start or end of file
 - > It is useful to support sizing directories within the header structure for efficiency
- Fractal (sub-files are files!)
 - Two valid files can be appended and remain valid files
 - > Two valid files can be separated (at bank boundaries) and remain valid files
 - > Physically embedding a bank into the file has simple controllable behavior
 - Embeds as a relative directory retaining substructure
 - Embeds as an absolute directory retaining substructure
- > Low level library tools supporting header building and scatter gather to files, ethernet and IPC

These features mean that in subsystem testing / stand alone systems are simple

- > They use identical readers
- They can use identical analysis codes
- > They can be written at any stage of DAQ computing for integration and testing