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rfhtroduction

Streaming readout supports near real-time analysis, and open up opportunities for integration of
Al/ML for rapid data interpretation and decision-making

Integration of DAQ, analysis and theory to optimize physics reach

Front End
dafa
m A Data Processor Theory
Front—End Front End

Research model with seamless data processing from DAQ to data analysis

* Building the best detector that fully supports streaming readout and Al/ML:
* FastML for alignment, calibration, and reconstruction in near real time.
. lications and Techniques for Fast Machine Learning in Science (Front.Big Data 5 (2022) 787421)
* Al for intelligent decisions
* For rapid turnaround of data for the physics analysis and to start the work on publications.

M. Diefenthaler, Streaming Workshop X —


https://indico.bnl.gov/event/17621/contributions/71752/subcontributions/2179/attachments/45496/76760/Diefenthaler-EPIC-StreamingReadout.pdf

|_Int roduction _l

e Streaming readout supports near real-time analysis, and open up opportunities for integration of
Al/ML for rapid data interpretation and decision-making

e Addressing uncertainty quantification in data processing and analysis is prominent for machine
learning and deep learning applications. Neglecting UQ can have dramatic effects downstream in the
near real-time data processing pipeline.

Jefferson Lab 3 I



|_Int roduction _l

e Streaming readout supports near real-time analysis, and open up opportunities for integration of
Al/ML for rapid data interpretation and decision-making

e Addressing uncertainty quantification in data processing and analysis is prominent for machine
learning and deep learning applications. Neglecting UQ can have dramatic effects downstream in the
near real-time data processing pipeline.

E. Wigner: “The optimist regards the future as uncertain”

o  While including UQ may look daunting and increases
‘complexity”, at the same time addressing it, if possible in a
streaming environment, would open possibilities, e.g.:

m  Uncertainty-aware models, making decisions also based on
uncertainty

m  Multifold applications, spanning from data filtering and data
quality monitoring to anomaly detection

effelson Lab 4 I




|_Int roduction _l

e Streaming readout supports near real-time analysis, and open up opportunities for integration of Al/ML
for rapid data interpretation and decision-making

e Addressing uncertainty quantification in data processing and analysis is prominent for machine learning
and deep learning applications. Neglecting UQ can have dramatic effects downstream in the near
real-time data processing pipeline. This regards also ML/DL applications with streamed data.

e This can extend to fast reconstruction of abundant topologies collected in our detectors, and analyses
at the event-level (or particle-level, depending on the application)

e For an Electron lon Collider, one focus could be DIS events

event(particle)-level, uncertainty quantification (near real-time)

What | am going to show is heavily based on a recent paper accepted on NeurlPS’23

C. Fanelli, J. Giroux, “ELUQuant: Event-Level Uncertainty Quantification” arxiv:2310.02913 [cs.LG]
(and references therein)

Disclaimer: Similar arguments can also be applied to other near real-time applications at the event/particle level ) I




rEbistemic vs Aleatoric

Epistemic Uncertainty: This type of uncertainty
arises from a lack of knowledge which is
reflected in the effectiveness of the model in
describing the data. It can be reduced as
more information or data becomes available,
and by improving the model. It can be affected
by inaccuracy.

Aleatoric Uncertainty: This uncertainty is due
to inherent variability or randomness in a
process or system and cannot be reduced by
collecting more data. For example, even if we
know the probability of getting heads when
flipping a fair coin, the outcome of each
individual flip is still uncertain.

Aleatoric

Abdar, Moloud, et al. "A review of uncertainty quantification in
deep learning: Techniques, applications and challenges."
Information fusion 76 (2021): 243-297.
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|_Deep Inelastic Scattering _l

DIS is governed by the four-momentum transfer squared of the exchanged boson Q?, the inelasticity y, and
the Bjorken scaling variable x.

higher-order QED Initi
corrections at the
lepton vertex

| State Radiation

kJ

Final State Radiation

HES

Born diagram

These kinematic variables are related via Q? = s*x y, where s is the square of the center-of-mass energy.

q-P DIS

s=(k+P)?, Q'=-¢", y=.—%, and z=Q%/(sy). Kinematics

W ]



|_DIS kinematics: Traditional Methods _l

Conservation of momentum and energy
over constrain the DIS kinematics and leads
to a freedom to calculate x, Q?, y from
measured quantities

Each method has advantages and
disadvantages, and no single approach is
optimal over the entire phase space. Each
method exhibits different sensitivity to QED
radiative effects

Once (real) higher-order QED effects are

considered, various methods yield different
results and the calculated quantities for Q?,
y and x are not representative for the y/Z +
p scattering process at the hadronic vertex.

Summary of basic reconstruction methods

Method name Observables

Electron (e) [Eo,E,0]
Double angle (DA) [6, 7] [Eo,0,7]

Hadron (h, JB) [4] [Eo,2 9]

ISigma (IX) [9] (E,0,%] Sz E2sin% 9 E(1+-cos §)

1—y 2y

IDA [7] [E,0,7] y E?sin? 9 E(l+‘cos 0)

1-y

EoEX [Eo,E,X] AEGE — AE3(1 —y)

Eofx [Eo,0,%) 4Eg cot® £(1 —y)
6y [8] 6,5 —

Double energy (A4) [7] [Eo,E,E] (wg;)linE() 4Eoy(zEp)
EST [E,2,T) R i
S+E+4/E2+T2 v

E ET [Eo,E,T) 2Bo—EFy/ E2-T2 il

2Eg 1—y

Sigma () [9] [Eo,E,%,0] Qs

eSigma (eX) [9] [Eo,E,%,0] 2EE(1 4 cosg) ~— PltcosfiEizc)

Table 1. Summary of basic reconstruction methods that employ only three out of five quantities:
Ey (electron-beam energy), E and 6 (scattered electron energy and polar angle), ¥ and v (lon-

gitudinal energy-momentum balance, ¥ = Y ypg(Ei — p-,i), and the inclusive angle of the HFS).
Alternatively, the A4 method makes use of the HFS total energy Ej. Shorthand notations are used

Table taken from Arratia et al., NIM-A 1025 (2022): 166164



Example in one specific bin

®DA, Bin 2

Deeply Learning DIS

DIS fundamental
process @QEIC

l(];;) (Born level) l'(k?’)

Z/y* /W@
h(P) < Hadron

remnant

DIS beyond the Born approximation has a complicated
structure which involve QCD and QED corrections

350530 | NN:

e Use of DNN to reconstruct the kinematic observable x, Q?, y in the study of " B: 167
neutral current DIS events at ZEUS and H1 experiments at HERA. ik

e The performance compared to electron, Jacquet-Blondel and the
double-angle methods using data-sets independent of training

e Compared to the classical reconstruction methods, the DNN-based
approach enables significant improvements in the resolution of Q? and x

ables in b Vof z and Q?
defined as the 3 of the
and log(Q?) -

First application of DL for regression of DIS kinematics
M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.




I_InDUt featu reS Of ELUQlJant Utilized input features and H1 MC

dataset of paper NIM- A 1025 (2022)

e Define variables to characterize the strength of QED radiation

bal PTe % tan 3 bal Yet+ X
— T = 1.— and = 1-— .
. iy 3 tan g = 2 Ep
7 features to help indicate QED radiation in the event + additional 8 features

bal bal

e The values of p7™ and py

e Scattered-electron quantities and E.
e The energy, 7, and A¢ of the reconstructed photon in the event that is closest to the o Bl e

electron-beam direction, where A¢ is with respect to the scattered electron. o HFS four-vector quantities T, p,; and Ej,.

e The sum ECAL energy within a cone of AR < 0.4 around the scattered electron

o A¢(e, h) between the scattered electron and the HFS momentum vector.
divided by the scattered-electron track momentum.

e The difference ¥, — X.

e The number of ECAL clusters within a cone of AR < 0.4 around the scattered
electron.

Tot. 15 input features Dataset Training Events  Validation Events Testing Events ~ Size on Disk

HI 8.0 x.10° 1.9 x 10° 1.9 x 10° 8 GB

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 1 9
NIM-A 1025 (2022): 166164




E L U Q 't C. Fanelli, J. Giroux, “ELUQuant: Event-Level Uncertainty Quantification” arxiv:2310.02913 [cs.LG]

Measured Input LTOt = ‘CRCQ'- + ,yﬁphys- + /BENF-

|

‘: ; i \

Learn the Posterior over the weights
(In,Out)

LCMNF. = Eyw 20y [— K L(q( ) [p(W)) + log r(z1,|W) — log q(z1; )]

e W Access epistemic (systematic) uncertainty through sampling MNF [1] layers
— Learn the regression transformation
5y

G ‘
Access aleatoric (statistical) as a function of regressed output [2]

<z Q% y> < logo? lugrr,, lngrrv >
Lofercod outout Constrain the physics

E[’/lys. = Z l() (2‘ 1()() S; 4 1(){) I'i -+ 1()(2 .l)i )

[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks '] 1
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).




rxieatoric—RMS comparison

Y Bin DA Method DNN RMS Aleatoric
Jacquet-Blondel DA method = e method (0.5, 0.8) 0.147955  0.061922  0.057942

. JII J—‘M—LI JII 0.2, 0.5) 0.134833 0.075418  0.061706

(0.1,0.2) 0.145530 0.097903  0.071238
(0.05, 0.1) 0.175290 0.132783  0.082945
(0.01,0.05)  0.252723 0.184589  0.115453

Table 2: Aleatoric RMS Comparions - X

0.2 <Yiue<0.5

i
§ul
L
o
i

0.01 < ¥true <0.05 0.05 <Ytrue < 0.1 0.1 <ypue<0.2

X/Xtrue X/Xtrue X[Xtrue X/Xtrue XIXtrue




rxieatoric—RMS comparison

Jacquet-Blondel DA method e method

NN

0.5<Ytue<0.8

Y Bin e Method DNN RMS Aleatoric

(0.5,0.8) 0.056694  0.044052  0.041349
(0.2,0.5) 0.055787  0.037505  0.032280

(0.1,0.2)  0.054219 0.033230  0.029640

(0.05,0.1) 0.053403 0.032501  0.029411

(0.01,0.05) 0.053470  0.032139  0.029431
Table 3: Aleatoric RMS Comparison - Q2

0.2 <Yirue <0.5

0.01 < ¥trye < 0.05 0.05 < ¥rue < 0.1 0.1 < yirye <0.2

0.5 1.0 1.50.5 1.0 1.50.5 1.0 1.50.5 1.50.5 1.0 1.5
PiTe Q*/Q% e Q*/Q%e 2/om Q*/Q%e




rxieatoric—RMS comparison

Jacquet-Blondel DA method e method

0.5 <ytue <0.8

0.2 <Ytrue <0.5

Y Bin DA Method DNN RMS Aleatoric

0.5, 0.8) 0.060537 0.031194  0.034643
0.2,0.5) 0.082115 0.053126  0.044249
(0.1,0.2) 0.098631 0.078143  0.061840
(0.05,0.1) 0.127276 0.109309  0.078276
(0.01, 0.05)  0.158493 0.147391  0.120546

Table 4: Aleatoric RMS Comparison Y
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rEbmparison between DNN and BNN

. Ratio to Truth Error Comparison - x 040Ratio to Truth Error Comparison - Q2 0s0 Ratio to Truth Error Comparison - y

Aleatoric Component e Aleatoric Component
Epistemic Component

RMS (DNN)

e Aleatoric Component ®
Epistemic Component ’ Epistemic Component
e RMS (DNN) , e RMS (DNN) : °

Uncertainty

2 =
c c
S 8
— s
) (7]
v ]
< c
> )

e The RMS (MNF) roughly coincide with that of DNN as seen previously
e The RMS (DNN) for x and y is larger at low y given the distributions are broader
e The epistemic is systematically smaller than aleatoric component.

At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN
15

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) —




All methods compared

At low y, the RMS are typically
larger due to “broader”
distributions
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DNN and MNF have smaller
RMS over the whole y range
compared to other methods (this
was also the finding of NIM-A
1025 (2022): 166164) — “our
method outperforms other
methods over a wide kinematics
range”
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“The RMS resolution for y and x
increase at lower y, even for the
DNN reconstruction. ... This
results ... may be attributed to
further acceptance, noise, or
resolution effects that
deteriorates the measurement of
the HFS”

--e- RMS (MNF)
RMS (DNN)
--o- Total (MNF)
- RMS (Jacquet-Blondel)
--+- RMS (DA method)
RMS (electron method)

U( < Ypred/)/true > )
° o o
s & S

i
o
o

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) —




|_Epistemic vs True Inaccuracy _l

-#- Weighted True Inaccuracy - x -e- Weighted True Inaccuracy - Q2 . --e-- Weighted True Inaccuracy -y
T+ Weighted Epistemic Uncertainty -+ Weighted Epistemic Uncertainty * Weighted Epistemic Uncertainty ‘

Weighted True Inaccuracy
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e The plots show that the epistemic uncertainty is larger when the true inaccuracy is larger

(N.b.: we are agnostic to the true inaccuracy)



rﬁhysics—informed term

- Informed True Inaccuracy - x - Informed True Inaccuracy - Q2 ; - Informed True Inaccuracy -y
--- Uninformed True Inaccuracy - x - Uninformed True Inaccuracy - Q2 --- Uniformed True Inaccuracy -y
Weighted Epistemic Uncertainty Weighted Epistemic Uncertainty 1 : Weighted Epistemic Uncertainty
Weighted Epistemic Uncertainty Weighted Epistemic Uncertainty Weighted Epistemic Uncertainty %:

v

Weighted True Inaccuracy
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e The plots report the true inaccuracy, and the weighted epistemic uncertainty, which is
larger the larger the true inaccuracy is

e The physics-informed term (blue) contributes to decrease the true inaccuracy.



|_Leveraging event-level information _l

- ELUQ
DNN
- ELUQ (Error Weighted)

e In this plot, we are representing the
average uncertainty at the event-level

=
([ J

A “simple” DNN does not have per se
uncertainty at the event level. In the
plots we use the RMS from final
distributions.

o
©

N\
]
g
X,
g
Q.
5
V

e ELUQ provides uncertainty on each
event, individually. In the plots, we
represent the average event calculated
through a weighted average.

o
o)
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|_Leveraging event-level information _l

Represented the average uncertainty ° Rem_ovmg events with Iarge_

at the event-level in this plot relative event-level uncertainty
(with respect to the network
prediction) improve the ratio to
truth and reduce inaccuracy

=
N

=
=

Notice these cuts do not use
any information at the ground
truth level

We know that ELUQuant is
sensitive to anomaly detection.
Performance studies are
underway.

. — N.b.: events with at least one among x,Q?, y
IZ@ with relative uncertainty larger than a threshold are removed — 20 I

0.9

< Xpred/Xtrue >
5
[

o
o]
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r?ime performance

Training Parameter

value
Max Epochs 100
Batch Size 1024
Decay Steps 50
is i ing ti Decay Fac :
e This is great, but what about computing time? sy Fockor (7) 0.1

Physics Loss Scale («)
KL Scale (8)
Training GPU Memory

1.0
0.01
~ 1GB
~ TMB
611,247
~ 1 Day

Inference Parameter
Number of Samples (N)
Batch Size

Network memory on local storage
Trainable parameters
Wall Time

Inference GPU Memory Inference specs of ELUQuant
Inference Time per Event

Inference specs of ELUQuant

e In computational terms, ELUQuant at inference showed an impressive rate of 10,000 samples/event
within a 20 milliseconds on an RTX 3090.

e Can we do faster than this?

o Several ways. A rapid, streamlined approach is distilling this knowledge in a simpler but faster network
(we explored a DNN with 450k parameters) called in the following “Fast UQ”, obtaining an effective
inference time of 7-8us/event using batch ~0.5M events

J.g_ﬁecrson Lab

ing the Nature of Mate

VA



Towards near real-time

Comparison

;{1] C MLP CJ MLP
1 ELUQ ] ELUQ
[ FastUQ ] FastUQ
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Towards near real-time

Q?%(pred)/Q?(true) vs y

X(pred)/x(true) vs y

ELUQ
DNN

--e-- ELUQ (Error Weighted)
--e-- Fast UQ (Error Weighted)

- ELUQ
DNN

--e-- ELUQ (Error Weighted)
--e-- Fast UQ (Error Weighted)

0.0
Relative Epistemic Residuals

04 -02 00 02 0.4
Relative Epistemic Residuals

04 -02 00
Relative Epistemic Residuals

=== 0(X)alea

0.0
Relative Aleatoric Residuals

b 9(@)stea.

04 -02 o0 02 04
Relative Aleatoric Residuals

0.0
Relative Aleatoric Residuals

y(pred)/y(true) vs y

- ELUQ
DNN
ELUQ (Error Weighted)
- Fast UQ (Error Weighted)

L
1

ELUQuant/Fast UQ: Very similar
performance at the event level,
predictions on kinematics and
epistemic + aleatoric uncertainties
within ~5% on average




I_Summa ry _l

event(particle)-level, uncertainty quantification, near real-time

e The SRO approach unifies online and offline analyses, easing the integration of Al/ML for fast calibration
and reconstruction, leading to rapid data processing and delivery of results.

e | highlighted the importance of UQ in ML/DL in general, and extended this argument to near real-time
applications. This consideration is crucial for these models, especially at the event or particle level, and
applies broadly to any ML/DL processing streamed data using lower-level features.

e | showed new results from ELUQuant, and show the possibility that UQ opens (accessing information we
typically do not have at the event-level) in making decisions and predictions

e The inference performance of Bayesian architectures that address UQ improved in recent years with
modern hardware (ELUQuant ~20ms/event on RTX 3090), and UQ can be (already) embedded in our data
processing pipelines, in the larger scheme of having faster accurate data processing and analysis.

e We tried to speed up the computing time by distilling the knowledge of ELUQuant into a simpler and faster
DNN architecture. We achieved accurate performance with effective inference times of 7-8 us/event
il




