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Introduction

2M. Diefenthaler, Streaming Workshop X – Vision and Opportunities for Streaming Readout at EPIC

● Streaming readout supports near real-time analysis, and open up opportunities for integration of 
AI/ML for rapid data interpretation and decision-making

https://indico.bnl.gov/event/17621/contributions/71752/subcontributions/2179/attachments/45496/76760/Diefenthaler-EPIC-StreamingReadout.pdf
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● Streaming readout supports near real-time analysis, and open up opportunities for integration of 
AI/ML for rapid data interpretation and decision-making

● Addressing uncertainty quantification in data processing and analysis is prominent for machine 
learning and deep learning applications. Neglecting UQ can have dramatic effects downstream in the 
near real-time data processing pipeline.  

Not much taken into account yet 
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● Streaming readout supports near real-time analysis, and open up opportunities for integration of 
AI/ML for rapid data interpretation and decision-making

● Addressing uncertainty quantification in data processing and analysis is prominent for machine 
learning and deep learning applications. Neglecting UQ can have dramatic effects downstream in the 
near real-time data processing pipeline.  

E. Wigner: “The optimist regards the future as uncertain” 

○ While including UQ may look daunting and increases 
“complexity”, at the same time addressing it, if possible in a 
streaming environment, would open possibilities, e.g.: 

■ Uncertainty-aware models, making decisions also based on 
uncertainty  

■ Multifold applications, spanning from data filtering and data 
quality monitoring to anomaly detection
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What I am going to show is heavily based on a recent paper accepted on NeurIPS’23

C. Fanelli, J. Giroux,  “ELUQuant: Event-Level Uncertainty Quantification” arxiv:2310.02913 [cs.LG] 
(and references therein)

● Streaming readout supports near real-time analysis, and open up opportunities for integration of AI/ML 
for rapid data interpretation and decision-making

● Addressing uncertainty quantification in data processing and analysis is prominent for machine learning 
and deep learning applications. Neglecting UQ can have dramatic effects downstream in the near 
real-time data processing pipeline. This regards also ML/DL applications with streamed data. 

● This can extend to fast reconstruction of abundant topologies collected in our detectors, and analyses 
at the event-level (or particle-level, depending on the application)

● For an Electron Ion Collider, one focus could be DIS events 

event(particle)-level, uncertainty quantification (near real-time) 

Disclaimer: Similar arguments can also be applied to other near real-time applications at the event/particle level



Epistemic vs Aleatoric

6

● Epistemic Uncertainty: This type of uncertainty 
arises from a lack of knowledge which is 
reflected in the effectiveness of the model in 
describing the data. It can be reduced as 
more information or data becomes available, 
and by improving the model. It can be affected 
by inaccuracy. 

● Aleatoric Uncertainty: This uncertainty is due 
to inherent variability or randomness in a 
process or system and cannot be reduced by 
collecting more data. For example, even if we 
know the probability of getting heads when 
flipping a fair coin, the outcome of each 
individual flip is still uncertain.

Abdar, Moloud, et al. "A review of uncertainty quantification in 
deep learning: Techniques, applications and challenges." 
Information fusion 76 (2021): 243-297.



Deep Inelastic Scattering
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DIS is governed by the four-momentum transfer squared of the exchanged boson Q2, the inelasticity y, and 
the Bjorken scaling variable x. 

These kinematic variables are related via Q2 = s・x y, where s is the square of the center-of-mass energy.

Born diagram

higher-order QED 
corrections at the 

lepton vertex

Initial State Radiation

Final State Radiation

DIS 
Kinematics 



DIS kinematics: Traditional Methods
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● Conservation of momentum and energy 
over constrain the DIS kinematics and leads 
to a freedom to calculate x, Q2, y from 
measured quantities 

● Each method has advantages and 
disadvantages, and no single approach is 
optimal over the entire phase space. Each 
method exhibits different sensitivity to QED 
radiative effects  

● Once (real) higher-order QED effects are 
considered, various methods yield different 
results and the calculated quantities for Q2, 
y and x are not representative for the γ/Z + 
p scattering process at the hadronic vertex.

Summary of basic reconstruction methods

Table taken from Arratia et al., NIM-A 1025 (2022): 166164



Deeply Learning DIS

9M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.

DIS fundamental 
process @EIC

(Born level)

● Use of DNN to reconstruct the kinematic observable x, Q2, y in the study of 
neutral current DIS events at ZEUS and H1 experiments at HERA.

● The performance compared to electron, Jacquet-Blondel and the 
double-angle methods using data-sets independent of training

● Compared to the classical reconstruction methods, the DNN-based 
approach enables significant improvements in the resolution of Q2 and x

DIS beyond the Born approximation has a complicated 
structure which involve QCD and QED corrections

Example in one specific bin 

First application of DL for regression of DIS kinematics 



Input features of ELUQuant
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● Define variables to characterize the strength of QED radiation

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 
NIM-A 1025 (2022): 166164

+ additional 8 features7 features to help indicate QED radiation in the event

Tot. 15 input features 

Utilized input features and H1 MC 
dataset of paper NIM-A 1025 (2022): 
166164*  



ELUQuant

11[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).

Learn the Posterior over the weights

Access epistemic (systematic) uncertainty through sampling MNF [1] layers

Access aleatoric (statistical) as a function of regressed output [2]

Learn the regression transformation

Constrain the physics

C. Fanelli, J. Giroux,  “ELUQuant: Event-Level Uncertainty Quantification” arxiv:2310.02913 [cs.LG] 



Aleatoric-RMS comparison
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Aleatoric-RMS comparison
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Aleatoric-RMS comparison



Comparison between DNN and BNN
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● The RMS (MNF) roughly coincide with that of DNN as seen previously 

● The RMS (DNN) for x and y is larger at low y given the distributions are broader  

● The epistemic is systematically smaller than aleatoric component. 

● At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) — 



All methods compared
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● At low y, the RMS are typically 
larger due to “broader” 
distributions  

● DNN and MNF have smaller 
RMS over the whole y range 
compared to other methods (this 
was also the finding of NIM-A 
1025 (2022): 166164) — “our 
method outperforms other 
methods over a wide kinematics 
range”

● “The RMS resolution for y and x 
increase at lower y, even for the 
DNN reconstruction. … This 
results … may be attributed to 
further acceptance, noise, or 
resolution effects that 
deteriorates the measurement of 
the HFS” 

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) — 



Epistemic vs True Inaccuracy
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● The plots show that the epistemic uncertainty is larger when the true inaccuracy is larger 

(N.b.: we are agnostic to the true inaccuracy)



Physics-informed term
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● The plots report the true inaccuracy, and the weighted epistemic uncertainty, which is 
larger the larger the true inaccuracy is 

● The physics-informed term (blue) contributes to decrease the true inaccuracy.  

physics-informed



Leveraging event-level information
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● In this plot, we are representing the 
average uncertainty at the event-level 

● A “simple” DNN does not have per se 
uncertainty at the event level. In the 
plots we use the RMS from final 
distributions. 

● ELUQ provides uncertainty on each 
event, individually. In the plots, we 
represent the average event calculated 
through a weighted average.

Represented the average uncertainty 
at the event-level in this plot 



Leveraging event-level information
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● Removing events with large 
relative event-level uncertainty 
(with respect to the network 
prediction) improve the ratio to 
truth and reduce inaccuracy 

● Notice these cuts do not use 
any information at the ground 
truth level

● We know that ELUQuant is 
sensitive to anomaly detection. 
Performance studies are 
underway.

—  N.b.: events with at least one among x,Q2, y
 with relative uncertainty larger than a threshold are removed — 

Represented the average uncertainty 
at the event-level in this plot 



Time performance
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● This is great, but what about computing time? 

Inference specs of ELUQuant

Inference specs of ELUQuant

● In computational terms, ELUQuant at inference showed an impressive rate of 10,000 samples/event 
within a 20 milliseconds on an RTX 3090.

● Can we do faster than this?

○ Several ways. A rapid, streamlined approach is distilling this knowledge in a simpler but faster network 
(we explored a DNN with 450k parameters) called in the following “Fast UQ”, obtaining an effective 
inference time of 7-8us/event using batch ~0.5M events



Towards near real-time
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Towards near real-time
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Q2(pred)/Q2(true) vs y x(pred)/x(true) vs y y(pred)/y(true) vs y

ELUQuant/Fast UQ: Very similar 
performance at the event level, 
predictions on kinematics and 

epistemic + aleatoric uncertainties 
within ~5% on average



Summary
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● The SRO approach unifies online and offline analyses, easing the integration of AI/ML for fast calibration 
and reconstruction, leading to rapid data processing and delivery of results.

● I highlighted the importance of UQ in ML/DL in general, and extended this argument to near real-time 
applications. This consideration is crucial for these models, especially at the event or particle level, and 
applies broadly to any ML/DL processing streamed data using lower-level features.

● I showed new results from ELUQuant, and show the possibility that UQ opens (accessing information we 
typically do not have at the event-level) in making decisions and predictions  

● The inference performance of Bayesian architectures that address UQ improved in recent years with 
modern hardware (ELUQuant ~20ms/event on RTX 3090), and UQ can be (already) embedded in our data 
processing pipelines, in the larger scheme of having faster accurate data processing and analysis. 

● We tried to speed up the computing time by distilling the knowledge of ELUQuant into a simpler and faster 
DNN architecture. We achieved accurate performance with effective inference times of 7-8 us/event

event(particle)-level, uncertainty quantification, near real-time 


