

Silicon MAPS Streaming Readout in ALICE, sPHENIX, and ePIC

J. Schambach Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

- ALICE ITS-2
- sphenix mvtx
- ALICE ITS-3
- ePIC SVT

ALICE ITS-2 Layout

epi

ALPIDE Sensor Technology

Key Features

- \odot 29 µm x 27 µm pixel pitch, chip size 30 mm x 15 mm, 50 µm (IB) / 100 µm (OB) thick
- Continuously active, ultra-low power front-end (40nW/pixel)
- Ultra-low power matrix readout (< 200mW whole chip)
- ◎ Global shutter: triggered acquisition or "continuous readout"
- High speed output serial link: 1.2 Gbit/s (IB), 400 Mbit/s (OB)

ALPIDE Principle of Operation

Front-end acts as delay line

- Sensor and front-end continuously active
- Upon particle hit front-end forms a pulse with ~1-2μs peaking time ("analog delay")
- Threshold is applied to form binary pulse
- Hit is latched into memory if strobe is applied during binary pulse

Triggered and "Continuous" Mode Operations

• ITS-2 can operate in two modes:

Triggered mode: Pixels are latched with a short (~100 ns) strobe window, followed by read out, based on an external trigger.

Continuous mode: Pixels are latched using long, periodic strobe windows (~10 µs) with short inter-strobe periods (≈100 ns) to initiate read out.

ALPIDE Readout Architecture

ALICE ITS-2 Readout Hierarchy

ALICE Common Readout Unit (CRU) v2

- Altera Arria 10 FPGA
- Custom designed cooling
- Avago Minipods:
 - 4x 12 TX
 - 4x 12 RX
- 48 optical outputs (MTP), 48 optical inputs (MTP)
- USB Blaster II
- X16, Gen3 PCIe (CFM rev 3.0); 128 Gb/s

MAPS Streaming Readout Data Format

SOC: EOC:	Start of Continuous End of Continuous
TDH:	Trigger Data Header
TDT:	Trigger Data Trailer
RDH:	Raw Data Header
IHW:	ITS Header Word

9

J. Schambach (schambachjj@ornl.gov)

Layer 0

Layer 1

Layer 2

24.61

31.98 39.93

MVTX Readout System

ePI

sPHENIX "BackEnd": ATLAS FELIX 712v2

sPHENIX Timing Mezzanine

PCle Gen 3 x 16

Architecture Highlights:

- Xilinx Kintex Ultrascale KU115 FPGA
- 48 **bi-directional** GBT links
- 16 lane Gen 3 PCle
- Mezzanine site for sPHENIX timing system card Performance:
- PCIe Tx > 100Gb/s

CAK RIDGE

sPHENIX DAQ Architecture

MVTX Hardware: 48 Staves 48 FEE (Readout Units) 6 FELIX BNL-712v2 6 EBDC servers Acronyms:

FEE	Front End Electronics
FELIX	Front End Link eXchange
EBDC	Event Buffer and Data Compressor
ATP	Assembly and Trigger Processors
Buffer Box	Interim storage
FEM	Front End Module
DCM2	Data Collection Module
SEB	Sub-Event Buffer

ALICE ITS-3 Streaming Readout

ALICE ITS-3 "MOSAIX" Stitched Sensor

Layer 0: 12 x 3 repeated units+endcaps Layer 1: 12 x 4 repeated units+endcaps Layer 2: 12 x 5 repeated units+endcaps

Repeated (Stitched) Sensing Unit (RSU)

IB Layer Parameters	Layer 0	Layer 1	Layer 2
Sensor length [mm]		265.992	
Sensitive length [mm]		259.992	
Sensor azimuthal width [mm]	58.692	78.256	97.820
Radial position [mm]	19.0	25.2	31.5
Equatorial gap [mm]		1.0	

Table 3.2: Design dimensions of the sensor dies and radial position.

Half Repeated Sensor Unit

Each Half Unit is segmented in Tiles (Domains)

Each tile acts as an independent sensor Separate Local Power Configuration Readout Link (160 Mb/s) Each Tile data output has direct connection to the left endcap

Block	Width [mm]	$\begin{array}{c} { m Height} \\ { m [mm]} \end{array}$	$\frac{\rm Block \ Area}{\rm [mm^2]}$	Instances	Percent area
RSU	21.666	19.564	423.873	1	100%
Pixel Matrix	3.571	9.197	32.843	12	92.98%
Biasing	3.571	0.060	0.214	12	0.61%
Power switches	0.020	9.257	0.185	12	0.52%
Data Backbone	0.060	9.257	0.555	4	0.52%
Readout periphery	3.591	0.200	0.718	12	2.03%
Test pads	21.666	0.250	5.416	2	2.56%
Seal ring and dicing lane	21.666	0.075	1.625	2	0.77%

Table 3.4: Plan of dimensions of the blocks composing one Repeated Sensor Unit and percentageof the RSU area occupied by the instances of the block.

On-Chip Readout Scheme

Data Flow – From Tile to Left Endcap

18

Slow Control

endpoint

-Clk and cntrl signals

Timeout

manager

Watchdog

ITS-3 Detector Electronics – Data & Control

VTRx+

IpGBT

ePIC Silicon Vertex Tracker (SVT)

Well integrated, large acceptance, high precision Silicon Vertex Tracker based on large area, low power MAPS in 65 nm CMOS imaging technology

ePIC SVT Barrel & Disks

Regior	h Layer	radius [mm]	length [mm]	X/X0
IB	L0	36	270	0.05 %
	L1	48	270	0.05 %
	L2	120	270	0.05 %
OB	L3	270	540	0.25 %
	L4	420	840	0.55 %

Outer Barrel

pered aperture for SR

Contral be

EE/HE	+z [mm]	-z [mm]	r_out [mm]	X/X0 %
ED0/HD0	250	-250	240	0.24
ED1/HD1	450	-450	420	0.24
ED2/HD2	700	-650	420	0.24
ED3/HD3	1000	-900	420	0.24
ED4/HD4	1350	-1150	420	0.24

+Z

h & e Disks

Inner Barrel

ePIC MAPS Readout

- Development of a multiplexing strategy for the output links of the EIC LAS
 - Multiple 5 Gbps links in ITS3 sensor, not needed for the (much lower) data rates at ePIC
- Tow options under consideration
 - External multiplexing using commercial (radiation tolerant) FPGA
 - Multiplexing integrated into sensor ASIC

ePIC Backend: ATLAS FELIX Phase II Run 4 hardware

Based on Xilinx Versal Prime VM1802

- Dual-core ARM Cortex-A72 Application Processing Unit
- Dual-core ARM Cortex-R5F Real-Time Processing Unit
- Al Engine
- Programmable Logic
- Future: Versal Premium
- 4 Samtec FireFly transceivers
 - 24 bi-directional optical links (future: 48 links)
 - 10 / 25 Gbps bandwidth per channel
- 1 Samtec FireFly for LTI/TTC links
 - Trigger, Timing and Control (4 links)
 - 100 GbE Networking
- PCIe Gen4 x16 (240Gbps)
 - 2 x8 lanes bifurcated
 - Future: PCIe Gen5 up to 16 lanes

BNL FLX-182 Prototype

CAK RIDGE

23

J. Schambach (schambachjj@ornl.gov)

BACKUP

ALICE Data Acquisition: First Level Processors with CRUs

FELIX Firmware

Fig. 5. Block diagram of the FLX-712 firmware

arXiv:1806.10667v1

Fig. 6. Structure of the Wupper PCIe engine

Pixel Matrix - Hit driven architecture

CAK RIDGE National Laboratory

- Priority encoder sequentially provides addresses of all hit pixels present in double column
- No activity if no hit (no free running clock) → low power

epi

ALPIDE Architecture

ALICE Server/GPU Farms for Data Acquisition and Online Processing

Data Acquisition Servers & Electronics

- 13 "First level Processors" (FLP)
 2 CRUs & 8TB of local storage each
- Storage Farm for commissioning:

200 TB local disk server + 500 TB cloud storage

• Event Processing Nodes (GPU Farms)

