New differential cross section measurements in the Higgs sector

Sagar Addepalli Brandeis University | sagar@brandeis.edu **BNL** Particle Physics Seminar 7th September, 2023

Joined Brandeis in August 2019 as a post-bac stationed at Brookhaven National Lab Continuing as a PhD student (supervisor Gabriella Sciolla); expected graduation early 2024

Muon Performance for displaced muons

BNL Particle Physics Seminar

Cross Section measurements in the Higgs sector

- Introduction: Why do we do them?
- Strategy: How do we do them?
- Optimization: How well can we do them?
- Results and Interpretation: What do we learn from them?
- Future Projections: How good can we get at them?

Teaser: First fully fiducial measurement in the Vector Boson Fusion $H \rightarrow WW \rightarrow ev\mu v$ channel!

Strategy

The Standard Model

Strategy

The Standard Model

BNL Particle Physics Seminar

7 September 2023

5

The Standard Model

Strategy

BNL Particle Physics Seminar

The Standard Model

Strategy

7

BNL Particle Physics Seminar

Strategy

The Standard Model

BNL Particle Physics Seminar

Strategy

The Standard Model

The Standard Model

Strategy

Current model of particle physics

BNL Particle Physics Seminar

The Standard Model

Strategy

Current model of particle physics Albeit incomplete...

 $\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{A} \\ &+ \mathcal{L} \mathcal{D}_{ij} \mathcal{L}_{j} \mathcal{P}_{j} \mathcal{P}_{+h.c.} \\ &+ |D_{\mu} \mathcal{P}|^{2} - \mathcal{V}(\mathcal{P}) \end{aligned}$

BNL Particle Physics Seminar

7 September 2023

11

Open Problems

Begeman K G Astron. Astrophys. 223 47

Rotation curves of galaxies \Rightarrow dark matter

What is the nature of DM?

Physicists try to tackle specific problems in two ways

- direct searches of their favourite particles in certain models
- precision measurements of Standard Model phenomena

SNO Collaboration: Phys. Rev. C 88, 025501

 ν oscillations $\Rightarrow \nu$ have mass

What is the origin of ν mass?

Strategy

Precision Measurements

$$-\frac{(q/m)_p}{(q/m)_{\bar{p}}} = 1$$

Higgs Coupling to Electroweak Vector Bosons

Strategy

- The gauge bosons gain mass through Electroweak Symmetry Breaking
- Post EWSB, the SM predicts HVV couplings at tree level

Higgs – gauge bosons interactions

During interactions

$SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

Higgs potential

BNL Particle Physics Seminar

Higgs Coupling to Electroweak Vector Bosons

Strategy

- The gauge bosons gain mass through Electroweak Symmetry Breaking
- Post EWSB, the SM predicts HVV couplings at tree level
- Precision measurements of the HVV coupling acts as a strong test to the structure of EWSB

Higgs – gauge bosons interactions

Vector Boson Fusion H → WW: HVV coupling in production as well as decay

Higgs potential

Strategy

Optimization

ATLAS Experiment @ the LHC

Results

High-Lumi

BNL Particle Physics Seminar

Strategy

ATLAS Experiment @ the LHC Run-2: $\sqrt{s} = 13 \text{ TeV}$ Data collected b/w 2015-2018 ِ 160 و ATLAS √s = 13 TeV 40 Preliminary Delivered: 156 fb⁻¹ LHC Delivered Recorded: 147 fb⁻¹ ATLAS Recorded ~10¹⁶ pp collisions ~10⁷ Higgs bosons prøduced 20 Jan'¹⁵ Jul'¹⁵ Jan'¹⁶ Jul'¹⁶ Jan'¹⁷ Jul'¹⁷ Jan'¹⁸ Jul'¹⁸ Month in Year

Sagar Addepalli (Brandeis University)

BNL Particle Physics Seminar

Results

High-Lumi

VBF H \rightarrow **WW at ATLAS**

Within the statistical reach for differential measurements

 $N_{events} = \sigma_{VBF} \cdot BR_{H \rightarrow WW} \cdot \mathscr{L}_{Run-2} \cdot W \text{ decay choice} = O(1000)$

Strategy

Signal Signature

2 highly energetic, separated **jets** with no high energy jet activity between them

Strategy

Fiducial Phase Space

Using Monte Carlo to go from the measured space to the total space adds large extrapolations due to limitations in the event generator and parton shower models

Sagar Addepalli (Brandeis University)

Strategy

Fiducial Phase Space

Minimal extrapolations from the detector phase space to the fiducial. Fiducial cross sections are the most model independent way to make measurements

Sagar Addepalli (Brandeis University)

BNL Particle Physics Seminar

Fiducial region: defined by kinematics of particlelevel final states close to detector level definition

Analysis Goals

- ▶ **Differential** fiducial cross-section of VBF production of Higgs in the WW ($\rightarrow\mu+e+E_T^{miss}$)+2jets final state
- Remove detector effects: go from the measurement phase space to the fiducial phase space. Report cross-section as functions of particle-level kinematics.
- Interpret the measurements to search for anomalous couplings of the Higgs boson

Analysis Challenges

- Final state not fully reconstructed non-resonant signal
- Many SM processes with multi-lepton+multi-jet final states

- Define a narrow signal rich phase space (Signal Region) to isolate the signal
- Estimate background contamination and the uncertainty on it
- **VBF H** 11%

Other SM

2%

Background subtracted data gives # signal events, $N_{
m signal}^{
m SR}$

VBF H

11%

From MC

Other SM

2%

Analysis Challenges

- Final state not fully reconstructed non-resonant signal
- Many SM processes with multi-lepton+multi-jet final states

- Define a narrow signal rich phase space (Signal Region) to isolate the signal
- Estimate background contamination and the uncertainty on it
- Background subtracted data gives # signal events, $N_{\text{signal}}^{\text{SR}}$

BNL Particle Physics Seminar

Strategy

Biggest backgrounds – top induced and VV

SR is a **very narrow** VBF isolating phase space Raw modelling uncertainties comparable to the # signal events – need to be significantly reduced in a data-driven manner

High-Lumi

BACKGROUND RICH PHASE SPACE

VBF BOUND PHASE SPACE

LARGE EXTRAPOLATIONS

BNL Particle Physics Seminar

Strategy

Biggest backgrounds - top induced and VV

RICH PHASE SPACE

Тор

VBF BOUND PHASE SPACE

LARGE EXTRAPOLATIONS

BNL Particle Physics Seminar

Signal-Background Classification

Signal Sensitivity

- D_{VBF} serves a two-fold purpose
 - Allows a data-driven estimation of the Top and VV bkgs from within the targeted phase space
 - Adds sensitivity to VBF signal
- ▶ No explicit cuts made on BDTs. SR1 and SR2 share signal and bkg norm factors in the simultaneous fit.
- All of SR is measured!

Background Sensitivity

- **Second BDT** trained in the SR to add
- Top+VV in SR1 and SR2

Strategy

Simultaneous Fit Model

Sagar Addepalli (Brandeis University)

Optimization

Results

BNL Particle Physics Seminar

Reducing Model Dependence

- BDTs trained using SM Monte Carlo predictions use maximal information from the model
- Necessary to penalize the BDT if it prefers a model

Remove x_i and correlated observables

Training variables for D_{VBF} for integrated XS measurement

..., $\mathcal{X}_{\mathcal{N}}$

Training variables for D_{VBF} for x_i differential XS measurement

BNL Particle Physics Seminar

Tests of Model Independence

To test \rightarrow How sensitive is the method of measurement to the modeling of the signal by the MC?

Tests of Model Independence – sensitivity to template shape

The template structure was modified by varying the kinematics used for BDT inputs in two independent tests

- 1. Re-weight variables the BDTs are sensitive to with BSM effects (physical effect)
- Vary binned BDT shapes to $n\sigma_{stat}$ deviations (statistical effect)

Tests of Model Independence – accuracy of measurements

Multiple tests of the overall fit structure showed no bias towards the MC prediction used to train the BDTs and to build the fit templates. The measurement is model independent!

Integrated Fiducial Cross-Section

Integrated fiducial cross section measured with 23% error Result limited by data statistics

BNL Particle Physics Seminar

Integrated Fiducial Cross-Section

Measured XS compared to theoretical predictions using different MC simulation models at varying orders of EW and QCD couplings

EW @ NLO vs LO Different Parton Shower and Underlying Event models

BNL Particle Physics Seminar

7 September 2023

Integrated Fiducial Cross-Section

Measured XS smaller than predictions – consistent with independent measurements in similar phase spaces

Introduction

Differential Cross-Sections

Strategy

 $p_{\mathrm{T}}^{\mathrm{H}} = |\mathbf{p}_{\mathrm{T}}^{\mu} + \mathbf{p}_{\mathrm{T}}^{\mathrm{e}} + \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}|$

13 observables measured in total! Both, lepton-like and jet-like

 $\Delta \phi_{jj} = \phi^{j_{\eta>}} - \phi^{j_{\eta<}}$

Uncertainties

- Unfolding keeps the signal modeling systematics ι
- Top induced and diboson modeling systematics su
- ggF estimated from data and modeling uncertainty
- Biggest detector systematic from jets and E^{miss} reco
- Measurement precision limited by data statistics

		Source	Uncertaint	y [%] $\sigma^{ m fid}$
		Signal modeling	5	
	5	Signal parton shower	< 1	
		tī modeling	6	
Inder control		WW modeling	4	
		Z/γ^* +jets modeling	4	
ib-leading		ggF modeling	5	
y under control		Mis-Id background	< 1	
onstruction	Je	ets & Pile-up & $E_{\rm T}^{\rm miss}$	5	
		<i>b</i> -tagging	< 1	
		Leptons	1.5	
		Luminosity	1.5	
		MC statistics	5	
		Total systematics	13	
		Data statistics	20	
		Total uncertainty	23	

Strategy

Introduction to Effective Field Theory

Sagar Addepalli (Brandeis University)

Sagar Addepalli (Brandeis University)

EFT Interpretation

Interpreting the measurements in the formalism of Standard Model Effective Field Theory (<u>arXiv:1709.06492</u>)

 $\sigma - \sigma_{\rm SM} \propto 2 \frac{c}{\Lambda^2} \operatorname{Re}\left(\mathscr{M}_{\rm SM}^* \mathscr{M}\right) + \frac{c^2}{\Lambda^4} |\mathscr{M}^2|$ Linear/Interference Term Quadratic/Pure-BSM Term

EFT Interpretation

Interpreting the measurements in the formalism of Standard Model Effective Field Theory (<u>arXiv:1709.06492</u>) Setting constraints on Wilson coefficients for both CP-even and CP-odd mass dimension-6 EFT operators

Wilson coefficient

Strength of the operator

Cut-off energy scale

 $c_{\rm HW}, c_{\rm HWB}, c_{\rm HB}$ $c_{\rm HW}$, $c_{\rm H\tilde{W}}$ $C_{\mathrm{H}\tilde{\mathrm{W}}}, C_{\mathrm{H}\tilde{\mathrm{W}}\mathrm{B}}, C_{\mathrm{H}\tilde{\mathrm{B}}}$ $c_{\text{Hq1}}, c_{\text{Hq3}}, c_{\text{Hu}}, c_{\text{Hd}} \leftarrow$ Can affect the VBF production...

Sagar Addepalli (Brandeis University)

^{Operator}

Constraints on Wilson Coefficients

- All limits consistent with with the SM prediction
- Strongest limits on $c_{\rm HW}$, $c_{\rm H\tilde{W}}$ and $c_{\rm Hq3}$ from linear only parameterization
- Strongest limits on c_{HB} , c_{HB} , and c_{Hq3} from lin+quad parameterization
- Shows the impact of the quadratic term (and hence sensitivity to missing higher mass dimension terms)

Sagar Addepalli (Brandeis University)

 $\sigma - \sigma_{\rm SM} \propto c \cdot \sigma_{\rm lin} + c^2 \cdot \sigma_{\rm quad}$

d parameterization e sensitivity to

Analysis Method Highlights

- First fully fiducial XS in the VBF $H \rightarrow WW \rightarrow ev\mu v$ channel!
- Achieved a model independent result in a background dominated phase space
- Analysis strategy paves the way for such measurements with exotic signatures
- Indispensable while using large datasets when systematics will be the limiting factors

High Luminosity LHC

Optimization

Results

High precision era

Inner Tracker (ITk) Upgrade

Inner Detector

More readout channels

Inner Tracker

ITk is an all-silicon detector with **similar or better performance** as ID in harsher conditions

Higher resolution

More radiation hard

Introduction

Inner Tracker (ITk) Upgrade

Tracker acceptance from 2.5 (ID) to 4.0 (ITk) Adds track information for jets with $\eta > 2.5$ which is not available with the current Inner Detector

Allows for jet flavor identification, better jet-primary vertex tagging, and pileup jet rejection. Significant background suppression in the VBF H→WW channel which has forward jets!

Stave Assembly

- Stationed at Brookhaven National Lab for 2 years as a key member of the stave assembly and testing team
- Built the first 28 module stave critical prototype for the stave assembly step to pass the Final Design Review

Strip Module – Smallest individual detector

One side of the first 28 module **stave** prototype built with 50 µm accuracy

Sagar Addepalli (Brandeis University)

Optimization

Results

High-Lumi

Stave Core – Mechanical and electrical support to the modules

Radiation hard glue (pattern since evolved)

Stave Metrology

- > Set-up the first out-of-plane metrology apparatus for staves using a laser based measurement device
- Necessary quality control step to ensure stave insertion clearance and timely defect catching

VBF H \rightarrow **WW Precision Measurements**

- Strong probe of physics beyond the SM putting the structure of Electroweak Symmetry Breaking to test
- First fully fiducial differential cross section measurement in the $e + \mu + 2jets + E_T^{miss}$ final state
- Measured cross sections as functions of 13 kinematic observables and correlations
- Constrained Wilson coefficients for CP-even and CP-odd operators in an EFT framework
- Technique paves the way for future measurements of low cross section processes hidden under backgrounds

Phase-II of ATLAS

Accepted Paper

Integrated and differential fiducial cross-section measurements for the vector boson fusion production of the Higgs boson in the $H \to WW^* \to e \nu \mu \nu$ decay channel at 13 TeV with the ATLAS detector Phys. Rev. D

> 3000 fb⁻¹ of pp collision data allows probing rare processes with extremely high precision putting SM to test

▶ Enhanced detector acceptance and reconstruction techniques add sensitivity to VBF H→WW measurement

arXiv:2304.03053

ADDITIONAL MATERIAL

Sagar Addepalli (Brandeis University)

BNL Particle Physics Seminar

7 September 2023

Higgs Mass Constraints from EW Precision Measurements

Model Independent Probe

Sources of model dependency

- Phase space definition
- Profile-likelihood fit
- Machine learning methods relying on training models
- Extent of kinematic reconstruction

Reconstructing the kinematics of H is

Robust, if the final state is fully reconstructed H

Model independency \leftrightarrow low-model dependency

Model Independent Probe

Sources of model dependency

- Phase space definition
- Profile-likelihood fit
- Machine learning methods relying on training models
- Extent of kinematic reconstruction

Reconstructing the kinematics of H is

Robust, if the final state is fully reconstructed

- Model driven, if not
 - Partial reconstruction E_T^{miss}
 - SM assumption only ν leave E_{T}^{miss}

H

BNL Particle Physics Seminar

7 September 2023

56

Learning from previous measurements

VBF H $\rightarrow \gamma\gamma$ (arXiv: 2202.00487)

 $\gamma\gamma$ fully reconstructible

VBF contribution subdominant

fiducial only in production???

BNL Particle Physics Seminar

7 September 2023

Target Phase Space

$m_{ au au}$	$ < m_Z - 25~{ m GeV}$
${ m Central}~{ m jet}~{ m veto}~(p_{ m T}>20{ m GeV})$	yes
Outside lepton veto	yes
m_{jj}	$>450~{ m GeV}$
$ \Delta y_{jj} $	> 2.1
$ \Delta \phi_{\ell\ell} $	$< 1.4 ~\mathrm{rad}$
two leading jets	ons inside rapidity r

 $m_{\tau\tau} \rightarrow \text{inv} \text{ mass of } \tau\tau \text{ system in the collinear approximation (Plehn et al. - arXiv:hep-ph/9911385)}$

Sagar Addepalli (Brandeis University)

Process	# in
VBF H	11
VV	28
Top Induced	42
ggFH	39
Z+Jets	79
W+Jets (Mis-Id)	47
$\nabla \gamma$, Htt, VH	16
Total S+B	1000±
Data	91

egion spanned by leading jets

BNL Particle Physics Seminar

58

Drell-Yan Background Estimation

$m_{ au au}$	$66.2~{ m GeV} < m_{ au au} < 116.2~{ m GeV}$
${ m Centraljetveto}~(p_{ m T}>20{ m GeV})$	yes
Outside lepton veto	yes
m_{jj}	$>450~{ m GeV}$
$m_{\ell\ell}$	$< 80~{ m GeV}$

 Z/γ^* +jets CR definition

 $m_{\tau\tau} \rightarrow \text{invariant mass of } \tau\tau \text{ system}$ in the collinear approximation

75% Z/γ^* +jets purity

BNL Particle Physics Seminar

7 September 2023

gluon fusion Higgs Background Estimation

$m_{ au au}$	$ < m_Z - 25~{ m GeV}$
$ m Centraljetveto~(p_T>20 m GeV)$	Exactly 1 fails
Outside lepton veto	
$ \Delta \phi_{\ell\ell} $	$< 1.4 \mathrm{~rad}$

ggF CR / anti-VBF definition

- ggF prediction in the SR needs higher order corrections
- Complementary info with SR controls modeling uncertainties
- 2% purity high stat unc on ggF norm factor but low extrapolation unc from ggF-CR to SR

BDT trained to separate ggF from other MC

Mis-identified Leptons

- Impose strict requirements on the isolation and quality of leptons used in the analysis
- 5% mis-ID bkg in the SR difficult to model
- Using the "fake factor" method to extrapolate from W+jets CR (76% purity of mis-ID bkg) to SR

F.F. derived in a Z+jets rich region $Z \rightarrow \ell \ell \ell + \text{recoiling } \ell$

e inside HF jet

Simultaneous Fit

Profile likelihood minimizing fit designed to minimize total uncertainty – slight cost of adding stat errors while significantly reducing systematics

The bootstrapping mechanism

- Same data events are used to measure any two differential crosssections \Rightarrow measurements are correlated
- We create an ensemble of (pseudo) datasets to evaluate correlations – same data taken in 1000 universes
 - 1. Weigh data events by Poisson(1)
 - 2. Binned likelihood minimizing fits for each universe
 - 3. Statistical covariance between extracted parameters a and b –

$$\operatorname{COV}(a, b) = \frac{1}{1000} \sum_{i=1}^{1000} \left(a_i - \bar{a} \right) \left(b_i - \bar{a} \right)$$

Differential XS + correlations = maximal information for theorists! Allows interpretations using more than one distribution

ATLAS					<i>√s</i> = 13 TeV, 139 fb ⁻¹					
	0.33	0.42	0.39	0.25	0.00	-0.07	-0.15	-0.07	0.04	0.06
σ2	0.24	0.04	0.16	0.06	0.02	0.01	-0.04	0.04	0.07	0.08
σ_3	0.13	0.24	0.22	0.23	0.04	-0.04	-0.07	-0.11	-0.01	-0.02
σ_4	0.24	0.04	0.15	0.28	-0.09	-0.07	-0.01	-0.01	0.04	0.01
N ^{Data} / N ^{MC} Z+jets	-0.03	0.04	0.07	-0.01	0.95	0.18	0.05	0.04	0.14	0.26
N ^{Data} / N ^{MC} VV+Top-1	-0.11	-0.05	-0.08	-0.02	0.17	0.65	0.11	0.58	0.12	0.52
N ^{Data} / N ^{MC} ggF	-0.07	-0.14	-0.13	-0.04	0.04	0.10	0.85	0.07	-0.23	0.07
N ^{Data} / N ^{MC} VV+Top-2	-0.05	-0.04	-0.03	-0.03	-0.00	0.46	0.04	0.41	0.02	0.34
N ^{Data} / N ^{MC} Z+jets ggF	0.07	0.03	0.02	0.04	0.15	0.13	-0.25	0.10	0.95	0.01
J ^{Data} / N ^{MC} VV+Top ggF	0.05	0.01	0.08	0.04	0.28	0.46	0.06	0.38	-0.01	0.92
	σ ₁	σ2	σ_3	σ_4	1/0 ₈₁₀	1/0,810	1/0 ₈₁₀	1/0 ₈₁₀	10000	10.918
					-	Mr. Txjer	Ma Tx	(NM) () 991	Mac Tx	Mn Txjer

Long Lived Particle searches at ATLAS – A teaser

- LHC Run-3 great time to search for LLPs with the ATLAS detector!
- > Major speed-up in standard tracking makes room for reconstruction of high impact parameter objects

lived particle searches.

Irack built from ID hits from the prompt tracking pass optimised for low- d_0 (< 5 mm) tracks

Large Radius Tracking (LRT) used for building tracks with large d_0 . Made with leftover hits after prompt pass. Useful for long

Sagar Addepalli (Brandeis University)

BNL Particle Physics Seminar

Identification quality / working points (WP) for LRT muons

Calibration of muon WP

Muon spectrometers "far" from the ATLAS tracker – insensitive to mm level displacements at the interaction point

Using Muon Performance

Displaced Vertex with 2 Opposite Sign leptons

Search for Heavy Neutral Leptons with a displaced vertex

Electrical Testing

Set-up a standalone device to measure the IV response of Silicon sensors. Important quality control step to track the electrical response of the detector to various assembly and testing stages.

Simplified Template Cross Section Measurements

STXS Semi-Fiducial Phase Space

68

Independent Methods – Adversarial Network with Domain Adaptation

Camaiani et al: Eur. Phys. J. C (2022) 82:921

Fig. 1 Schematic view of the adversarial deep neural network

STXS Uncertainties

Source

Data statistical uncertai Total systematic uncert MC statistical uncertain Experimental uncertain Flavor tagging Jet energy scale Jet energy resolution $E_{\mathrm{T}}^{\mathrm{miss}}$ Muons Electrons Fake factors Pileup Luminosity Theoretical uncertaintie ggF VBF WW Тор Z au auOther VV Other Higgs Background normalizat WWТор Z au auTotal

	$\frac{\Delta \sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}}$	[%]
inties		15
ainties		18
nties		4.9
nties		6.7
		1.0
		3.7
n		2.1
		4.9
		0.8
		0.4
		0.8
		1.3
		2.2
es		16
		4.6
		12
		5.5
		6.4
		1.0
		1.5
		0.4
tions		4.9
		0.6
		3.4
		3.4
		23

STXS $H \rightarrow WW$ (arXiv: 2207.00338)

Fiducial Phase Space Definition

Selection Requirements

Lepton pair flavors

Lepton pair charge

Leading (subleading) lepton $p_{\rm T}$

Lepton η^{ℓ}

No. of additional leptons $\Delta R(\ell,\ell)$

 $m_{\ell\ell}$

 $\Delta R(\ell, \text{jet})$

No. of jets $(p_{\rm T} > 30 \text{ GeV}, |\eta| < 4.5$

No. of *b*-jets ($p_{\rm T} > 20$ GeV, $|\eta| <$

 $m_{\tau\tau}$

Central jet veto ($p_{\rm T} > 20 \text{ GeV}$)

Outside lepton veto

 m_{jj}

 $|\Delta y_{jj}|$ $|\Delta \phi_{\ell \ell}|$

	Signal Region	Fiducial Region			
	<i>e</i> - <i>µ</i>				
	0				
	> 22 GeV (>	• 15 GeV)			
	$ \eta^{\mu} <$	2.5			
	$0 < \eta^e < 1.37$				
	or	$ \eta^{e} < 2.5$			
	$1.52 < \eta^e < 2.47$				
	0				
	overlap removal	> 0.1			
	> 10 GeV				
	overlap removal	> 0.4			
5)	≥ 2				
2.5)	0				
	$< m_Z - 25 \text{ GeV}$				
	\checkmark				
	> 450 GeV				
	> 2.	1			
	< 1.4 rad				
	1				

EFT Operators

Wilson	Operator	Fit	Param.	95% confiden	ce interval [TeV ⁻²]
Coeff.	Structure	distr.	Order	Expected	Observed
c_{HW}	$H^{\dagger}HW^{n}_{\mu u}W^{n\mu u}$	$\Delta \phi_{jj}$	lin.	[-1.7, 1.6]	[-2.6, 0.60]
			lin. + quad.	[-1.4, 1.4]	[-1.8, 0.61]
c_{HB}	$H^\dagger HB_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$	lin.	[-5.9, 6.4]	[-6.7, 4.6]
			lin. + quad.	[-0.59, 0.66]	[-0.60, 0.66]
c_{HWB}	$H^\dagger au^n H W^n_{\mu u} B^{\mu u}$	$\Delta \phi_{jj}$	lin.	[-10, 9]	[-14, 5.9]
			lin. + quad.	[-1.2, 1.1]	[-1.2, 1.1]
c_{Hq1}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	$p_{ m T}^{j1}$	lin.	[-12, 15]	[-6.9, 22]
-	•	Ĩ	lin. + quad.	[-1.9, 1.7]	[-2.2, 2.0]
<i>C_{Hq}</i> 3	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{n}H)(\bar{q}\tau^{n}\gamma^{\mu}q)$	$p_{ m T}^{j1}$	lin.	[-0.56, 0.47]	[-0.74, 0.30]
-		Ĩ	lin. + quad.	[-0.43, 1.2]	[-0.56, 0.43]
C _{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u)$	$p_{ m T}^{j1}$	lin.	[-8.3, 6.9]	[-11, 4.2]
		Ĩ	lin. + quad.	[-2.0, 2.6]	[-2.5, 3.1]
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d)$	$p_{ m T}^{j1}$	lin.	[-21, 25]	[-13, 33]
	-	Ĩ	lin. + quad.	[-3.0, 2.7]	[-3.7, 3.4]
C _{HŴ}	$H^{\dagger}H\tilde{W}^{n}_{\mu u}W^{n\mu u}$	$\Delta \phi_{ii}$	lin.	[-1.7, 1.7]	[-1.8, 1.3]
11 //	μ	. 55	lin. + quad.	[-1.4, 1.4]	[-1.1, 1.4]
$C_{H\tilde{B}}$	$H^\dagger H ilde{B}_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$	lin.	[-28, 28]	[-32, 22]
	•		lin. + quad.	[-0.62, 0.62]	[-0.63, 0.63]
c _{HŴB}	$H^\dagger au^n H ilde W^n_{\mu u} B^{\mu u}$	$\Delta \phi_{jj}$	lin.	[-15, 15]	[-17, 12]
	•		lin. + quad.	[-1.2, 1.1]	[-1.2, 1.1]

Uncertainties for Differential Cross Sections

	Uncertainty [%]	Uncertainty range [%]				
Source	$\sigma^{ m fid}$	p_{T}^{H}	$p_{\mathrm{T}}^{\ell\ell}, p_{\mathrm{T}}^{\ell_1},$	$m_{\ell\ell}$	$p_{\rm T}^{j_1}, p_{\rm T}^{j_2},$	m_{jj}
			$p_{\mathrm{T}}^{\ell_2}, \Delta y_{\ell\ell} ,$		$ \Delta y_{jj} , \Delta \phi_{jj}$	
			$ \Delta \phi_{\ell\ell} , \cos(\theta_{\eta}^*)$			
Signal modeling	5	< 1 - 7	< 1 - 7	< 1 – 19	< 1 - 8	2 – 7
Signal parton shower	< 1	< 1 – 2	< 1 - 1.8	< 1 – 10	< 1 – 1.8	< 1 – 7
<i>tī</i> modeling	6	1.7 – 30	3 – 13	3 - 80	3 – 10	1.2 - 70
WW modeling	4	< 1 – 12	3 – 11	2 – 90	3 – 10	3 - 40
Z/γ^* +jets modeling	4	< 1 – 19	2 – 18	4 – 30	3 – 13	2 - 50
ggF modeling	5	4.0 - 28	3.4 – 10	2.6 – 12	2.3 – 9.0	1.4 – 86
Mis-Id background	< 1	< 1 – 12	1.1 – 5	< 1 – 19	1 – 3	< 1 – 40
Jets & Pile-up & E_{T}^{miss}	5	8 - 60	6 - 30	6 – 120	9 - 30	9 – 130
<i>b</i> -tagging	< 1	< 1 – 9	< 1 – 3	< 1 – 19	1.1 – 3	< 1 – 40
Leptons	1.5	3 – 17	2-9	1.2 – 13	1.7 – 7	< 1 – 16
Luminosity	1.5	1.7 – 2	1.3 – 1.9	< 1 – 4	1.5 – 2	< 1 – 1.9
MC statistics	5	10 – 40	6 – 30	6 – 180	8-30	7 – 90
Total systematics	13	19 – 90	13 – 60	12 – 180	15 – 50	15 - 200
Data statistics	20	50 – 160	30 – 110	30 - 400	40 - 100	50 - 300
Total uncertainty	23	50 – 190	40 - 120	30 – 500	40 - 100	50 - 400

Lepton Observables

Lepton Observables

Lepton Observables

Jet Observables

7 September 2023

Jet Observables

BNL Particle Physics Seminar

EFT Effects on $\Delta \phi_{jj}$

BNL Particle Physics Seminar

EFT Effects on leading jet p_T

BNL Particle Physics Seminar

