



# eRD107: Longitudinally separated Forward HCal (LFHCal)

**August 28, 2023** 

Friederike Bock (ORNL) for the eRD107 consortium

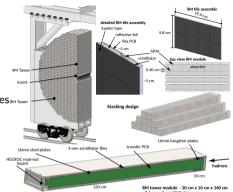
Participating institutes: ORNL, BNL, FNAL, ISU, GSU, Yale, UCR, UTK, Valpo

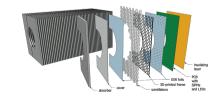


### The General Idea



#### Concept:

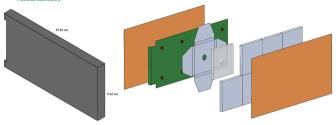

- CALICE AHCal inspired W/Fe-Scintillator calorimeter with SiPM on-tile-readout (modification since last review)
- Two main parts:
  - ► LFHCal built mostly out of 10x20x140 cm³ 8M modules BM Tower
  - ▶ Insert built out of 2 halves surrounding the beam pipe


#### LFHCal:

- 4 layers of tungsten + 61 layers of steel interleaved with scintillator material
- ► Transverse tower size  $5 \times 5$  cm<sup>2</sup>
- Multiple consecutive tiles summed to 7 longitudinal segments per tower

#### Insert:

- ► 10 layers of tungsten + 54 layers of steel interleaved with scintillator
- ► Hexagonal tiles of 8 cm² each read-out individually



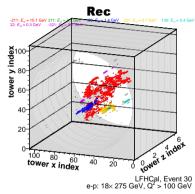





## **LFHCal 8M Scintillator Tile assembly**






- Tiles of  $\approx 0.4x5x5$  cm<sup>3</sup> with dimples individually wrapped in ESR foil assembled in a grid of 4x2 tiles
- 8 tiles are backed by a flexible PCB equipped with 8 SiPMs and LEDs sandwiched with Kapton foil
- Flexible PCB wrapped around side of absorber to connect with long PCB along the side of the module
- Tiles either injection molded or machined out of cast sheets





### **Read-out LFHCal & insert**





- High granularity needed to try to distinguish shower maxima close to beam pipe
- LFHCal: read out in 7 layers longitudinally (5 or 10 SiPMs summed) desirable min measurable tower energy 3-5 MeV, max 20-30 GeV in single tower segment
- $\bullet$  insert: read out every single tile desirable min measurable tower energy  $\sim 0.1-0.5~\text{MeV}/$  tile
- SiPMs mounted to flexible PCBs, passive signal transfer to back side of calorimeter using long transfer PCB
- 1 SiPM-HGCROC (up to 70 channels) per 8M module (56 channels), 320 HGCROCs for insert readout

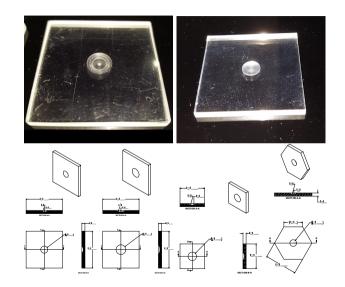


### eRD107 - 2023 Progress - executive summary



- Prototype tile production using machining & injection molding
  - Ongoing machining studies for tile production
  - Mold production for injection molded tiles in progress
- ② Reconstruction optimization
  - ► Realistic implementation of geometry in ePIC software stack
  - ► Integration with high granularity insert in progress
- 3 Tile Characterization
  - ► Vendor survey of SiPM vendors and types conducted
  - First light yield studies of machined tiles with different dimple sizes, machining techniques and wrappings ongoing
- Sensor board development
  - First prototype of sensor board delivered and being tested prior to test beam
- Small test module assembly
  - First prototype of single segment of 8M module being assembled for TB in Sep./Oct.

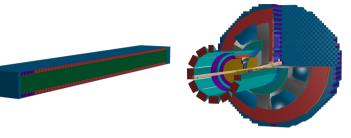


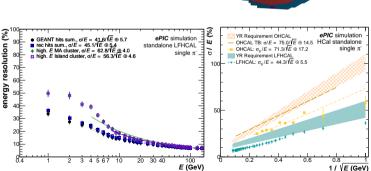



## **Tile production R&D**



- Started machining tiles at ORNL in LFHCal geometry
  - ► Established procedures for high quality tile machining
- Produced tiles with different dimple sizes
- Received machined tiles from Eljen


  → larger variance in size than
  anticipated
- Mold in production for original sized tiles with different dimples, 1/4-size tiles & hexagonal tiles for insert






## **Reconstruction optimization**







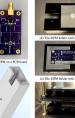
- Implementation of realistic geometry in ePIC software stack
- Single pion response in accordance with expectations & meeting YR requirements
- First version of clusterization algorithm working well at high E
- Integration with insert ongoing
- Ongoing studies to improve clusterization algorithm using ML started during several workshops
  - ► ePIC Calorimeter Workshop (Apr. 23')
  - ► HGS-HIRe Power Week -Machine Learning (Jul. 23')



## **Scintillator Characterization & Optimization (1)**

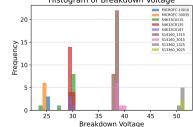


7/16


- Two parallel test setups for tile characterization (Yale & ORNL)
- SiPM test board produced
- Developed multiple 3D printed test stands for single SiPM & Cosmics data taking
- Vendor survey for available  $\approx 1x1$  mm & 3x3 mm SiPMs regarding
  - ► Availability
  - ► Data accuracy in data sheets

► Production stability



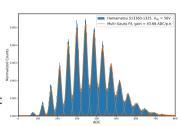

### Yale

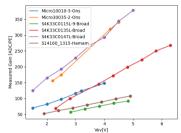


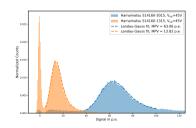


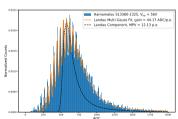
(c) SiRM Holder with hele to shine 400 nm LED shetons

#### Histogram of Breakdown Voltage





## **Scintillator Characterization & Optimization (2)**




- Single photon spectra for every SiPM
- Characterized different SiPM gains as function of  $V_{ov}$
- Started measuring cosmics MIP light yields for different SiPMs types
- Testing different scintillator materials (EJ-200, BC-408 & Fermilab injection molded)
- Sytematic evaluation of impact of machining defects ongoing











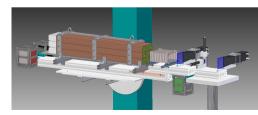
## Test beam plans & preparation Sep. 23'



9/16

**Dates:**  $6^{th} - 13^{th}$  Sept.

**Main purpose:** Scintillator characterization & HGCROC tests


- Parasitic to FoCal-H test beam at SPS
- Setup consists out of maximum 10 layers of 8M tile assemblies
- Fixed in plastic frame with cut outs in the center with slots for holding assemblies
- Each 8M tile assembly with 8 channel readout
- Connected via 16 channel ≈ 8 m micro-coax-cable assemblies to CAEN DT5202 64ch CITIROC SiPM readout unit or HGCROC

#### **Main expected measurements:**

- Light yields per tile
- Cross talk estimates of different tiles
- Use it as testing setup for SiPM-HGCROC while taking data with Focal-H using CAEN & VMM read-out
- If placed behind FoCal-H, measure part of leakage









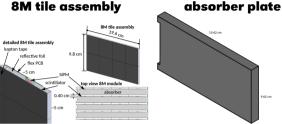
## Test beam plans & preparation Oct. 23'



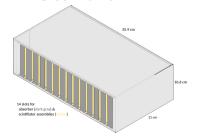
**Dates:**  $11^{th} - 18^{th}$  Oct.

Main purpose: Scintillator characterization &

**HGCROC** tests


Parasitic with FoCal-F at PS

- Setup consists out of maximum 14 layers of 8M tile assemblies & corresponding layers of absorber plates out of steel or tungsten
- Fixed in steel frame with slots for tile assemblies & absorber plates
- Same read-out setup as for September test beam


#### **Main expected measurements:**

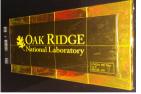
- Shower profile measurements with different absorbers
- Cross talk estimates of different tiles.
- Use it as testing setup for SiPM-HGCROC

8M tile assembly



#### Steel frame






#### eRD107 FY24 Plans & Milestones



- Tile production optimization using machining & injection molding (04/24)
  - ► Evaluation of different scintillator machining techniques
  - Comparative review of different vendor capabilities regarding adherence to tolerances as well as optimizing the light yield and its stability for large number of tiles
  - Documentation of procedures for optimizing the light yield of injection molded tiles during the production process
  - ► High quality prototype tiles to equip two 8M modules for test beam studies
- Reconstruction optimization (09/24)
  - ► Write-up of optimization results from simulations
- Sensor board development (03/24)
  - ► First prototype of sensor board for Si-PM readout (together with eRD109)
- Test module assembly (04/24)
  - ► First prototype of full 8M module
- Tile Characterization (08/2024)
  - Write-up of test bench & test beam measurement for all assembled tile-prototypes
  - ► First concept of a monitoring system to be installed in the LFHCal F. Bock (ORNL)









## eRD107 FY24 Funding request



Table 4: Total funding request by institution for each R&D activity.

activity cost in FY24 k\$ total cost in FV24 kS Tile Production R&D 11.6 31.6 Tile Char. (Lab) 19.0 19.0 Sensor Board 23.0 23.0 11.6 24.0 Total 38.0 73.6

Table 3: Total funding request and breakdown by institution.

| institute | cost in FY24 k\$<br>eng. and tech. | material | equipment | travel | total cost<br>in FY23 k\$ |
|-----------|------------------------------------|----------|-----------|--------|---------------------------|
| ORNL      | 13.0                               | 20.0     | 0         | 5.0    | 38.0                      |
| FNAL      | 11.6                               | 0        | 0         | 0.0    | 11.6                      |
| Yale      | 0                                  | 5.0      | 16.0      | 3.0    | 24.0                      |
| Total     | 24.6                               | 25.0     | 16.0      | 8.0    | 73.6                      |

Table 5: Estimated funding requests for LFHCAL R&D efforts in FY25-26.

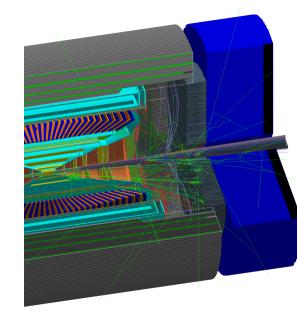

| Task                   | Estimated cost in \$ per year |      |  |
|------------------------|-------------------------------|------|--|
|                        | FY25                          | FY26 |  |
| mechanical engineering | 30K                           | 20K  |  |
| electrical engineering | 30K                           | 20K  |  |
| materials              | 40K                           | 40K  |  |
| test beam support      | 10K                           | 10K  |  |
| total                  | 110K                          | 90K  |  |

Table 6: Funding allocation and approximate completion dates for respective milestones for FY24.

- Funding for continuation of started R&D mainly on tile production & characterization
- Largest fraction of funding for equipment & material procurement
- Small travel funds for TB travel & visits at different test sites
- Significant in-kind contribution from universities and laboratories for assembly, simulation and data analysis

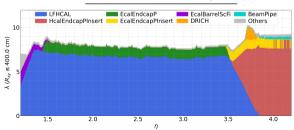
| Institute     | Item                                                 | Cost per<br>item in \$ | Number<br>of items | Total cost<br>in \$ | To be<br>compl. by |
|---------------|------------------------------------------------------|------------------------|--------------------|---------------------|--------------------|
|               | Tile Production R&D:                                 |                        |                    |                     | Q2/202             |
| ORNL          | cast material                                        |                        |                    | 15K                 |                    |
| FNAL          | raw material + dopant                                |                        |                    | (in kind) 0K        |                    |
| FNAL          | injection molder setup + operation                   | 180/h                  | 64h                | 11.6K               | Q4/2023            |
| ORNL/UTK/Yale | tile assembly                                        |                        | 40h                | (in kind) 0K        | Q1/2024            |
| ORNL          | travel                                               |                        |                    | 5K                  |                    |
|               | Tile Characterization (Lab Bench):                   |                        |                    |                     | Q3/2024            |
| Yale          | scintillator material characterization               |                        | 100h               | (in kind) 0K        | Q1/2024            |
| Yale          | source measurement unit & led pulser, other material | 19K                    | 1                  | 19K                 |                    |
| GSU/Yale/UCR  | tile lightyield testing                              |                        | 160h               | (in kind) 0K        | Q3/2024            |
| Yale          | travel                                               |                        |                    | 3K                  |                    |
|               | Sensor Board:                                        |                        |                    |                     | Q1/2024            |
| ORNL          | electrical engineering                               | 180/h                  | 72h                | 13K                 | Q4/2023            |
| ORNL          | connectors & cables                                  |                        |                    | 5K                  | Q4/2023            |
| ORNL          | sensor board production, assembly                    |                        | 160                | 5K                  | Q4/2023            |
| ORNL/UTK      | testing                                              |                        | 40h                | (in kind) 0K        | Q1/2024            |
|               | Reconstruction Optimization:                         |                        |                    |                     | 2025               |
| UTK/Yale/BNL  | simulations/digitization/reconstruction/analysis     |                        | 640h               | (in kind) 0K        |                    |
| Total         |                                                      |                        |                    | 73.6K               |                    |

# Thanks!





### **LFHCal in Numbers**




• Acceptance:  $1.2 < \eta < 2.8$ 

• Interaction length:  $6.5\lambda/\lambda_0$ 

- Inner modules (R < 1m) equipped with machined scintillator tiles & 3mm SiPMs
- Outer modules equipped with injection molded tiles & 1.3mm SiPMs
- 565.760 SiPMs. 60.928 read-out channels
- CD3-A/B procurement: Steel, Tungsten & SiPMs
- Current estimated total cost:  $\sim 15.8M$

| parameter               | LFHCal                   |  |  |  |
|-------------------------|--------------------------|--|--|--|
| inner x, y              | 60 cm                    |  |  |  |
| outer radius (envelope) | 270 cm                   |  |  |  |
| η acceptance            | $1.2 < \eta < 3.5$       |  |  |  |
| tower information       |                          |  |  |  |
| x, y                    | 5 cm                     |  |  |  |
| z (active depth)        | 130 cm                   |  |  |  |
| z read-out              | 10 cm                    |  |  |  |
| # scintillator plates   | 65 (0.4 cm each)         |  |  |  |
| # absorber sheets       | 61 (1.52 cm steel)       |  |  |  |
|                         | 4 (1.52 cm tungsten)     |  |  |  |
| interaction lengths     | $6.5 \lambda/\lambda_0$  |  |  |  |
| Sampling fraction f     | 0.035                    |  |  |  |
| # towers                | 8704                     |  |  |  |
| # modules               |                          |  |  |  |
| 8M                      | 1050                     |  |  |  |
| 4M                      | 76                       |  |  |  |
| # read-out channels     | $7 \times 8704 = 60,928$ |  |  |  |





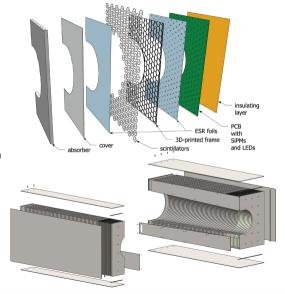
### **Insert in Numbers**



• Acceptance:  $2.7 < \eta < 4.4$ 

• Interaction length:  $7.5\lambda/\lambda_0$ 

Similar sampling structure as LFHCal


• 10 layers of tungsten, 55 layers of steel

 360 hexagonal tiles with SiPMs per layer, staggered positions in different layers

• Maximum  $\eta$  coverage with minimum dead area in combination with LFHCal

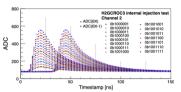
CD3-A/B procurement: Steel, Tungsten & SiPMs

ullet Current estimated total cost:  $\sim 1 M$ 





## **HGCROC** testing




16 / 16



#### Test setup in ORNL EIC lab:

- We have a KCU105 with the testboard and H2GCROC3
- Firmware/Software done and working
- Testing the feasibility of the ASIC for the EIC:
  - · Signal shapes
  - · Gain, dynamic range reach
  - TOA/TOT calibration



Internal injection test on all channels (one shown)

#### Prepared the H2GCROC3 testboard:

- Readout board is compatible with the CAEN commercial unit for ease of use
- 2 H2GROC per board to test the I2C in series
- Communication board to test the readout and cables used in final detector:
  - Samtec HQDP for 1-10 m length



