
ATLAS ATHENA CONFIGURATION

Johannes Elmsheuser
19 July 2023, ePIC software meeting

With material from Tadej Novak (DESY), Walter Lampl (Arizona), Scott Snyder
(BNL), Vakho Tsulaia (LBNL)



ATHENA FRAMEWORK

• Athena is CERN ATLAS experiment
Simulation, Reconstruction and partially
Data Analysis software framework

• Originally designed more than 20 years
ago for sequential execution

• LHC Run 1 (2010-2012): production jobs
in multi-job mode

• Run several independent instances
of serial Athena on a compute
node to utilize multiple CPU cores

• LHC Run 2 (2015-2018): switch to to
multi-process AthenaMP

• Initialize single process, then fork
multiple sub-processes

• Each sub-process still running
serial Athena

• LHC Run 3 (2022-2025): transitioned to
multithreaded AthenaMT

• A major migration effort affecting
practically all domains of the
ATLAS software 2/16



GAUDI AND ATHENA

• Athena is implemented on top of the Gaudi framework

• Gaudi contains components and interfaces for building event data processing
frameworks for HEP experiments

• Used by several experiments (e.g. ATLAS, LHCb), as well as the Future Circular
Collider

• Gaudi implements a Component Model
• Components implement an interface, and use other components through an
interface

• Components get compiled into Shared Object Libraries (DSO)
• A dedicated Gaudi Plugin Service locates at run time which DSO contains
requested component, loads the library, and creates an instance of the
component in memory

• Gaudi components are implemented in C++
• For several key Gaudi components Athena implements Athena-specific extensions

3/16



ATHENA JOB CONFIGURATION

• The ATLAS code contains thousands of Gaudi Components:
• Algorithms, Tools, Services, Converters, ...
• They are put together at run-time.

• To have a meaningful Athena job, one needs to define a meaningful
set of components, their properties and their relationships.

• This is what we call Athena job configuration

4/16



PYTHON AS THE CONFIGURATION LANGUAGE

• A long time ago ATLAS chose to use Python as the configuration
language.

• That implies that the configuration step is itself a ”program” and can
get arbitrarily complicated.

• For all components create Python equivalents at compile-time.
• Python classes with the same name and properties as the C++
component.

• Done automatically by the build system.
• Our configuration organically grew throughout the lifetime of
Athena.

• Many different iterations
• Over the past 2 years moved all main workflows to a common,
modern configuration infrastructure called ComponentAccumulator
configuration system

5/16



ATHENA CONFIGURATION SYSTEM

The Athena configuration system in broad terms the configuration system works as follows:

1. Each C++ component defines a set of configurable parameters (*),
• There is rich, yet restricted set of types of configurable parameters that are supported,
• Typically reasonable default values are defined as well.

2. During compilation a database entry is made containing information about these properties.
3. During the configuration this database is queried for information about a component and as

a result Python class is generated with class attributes corresponding to the properties
defined in C++.

4. Set of Python script creates Python objects and manipulates them (set properties). (*)
5. Resulting set of Python objects produce a serialized/textual representation of the

configuration.
6. The configuration is read in C++ program and populates the global dictionary with all

settings.
7. C++ components during the initialization fetch the values and set configurable parameters
(see 1st point) accordingly.

The steps marked with (*) are places where developer intervention is needed. That is to define
configurable parameters and to prepare scripts setting them. Other steps are automatized.

6/16



ONE SLIDE SUMMARY ON HOW ATHENA CONFIGURATION SHOULD LOOK LIKE

• No global namespace, no ”include”, proper Python.
• Information flow should be obvious and not hidden.
• Configuration fragments are standalone run-able and mergeable to
yield larger configuration fragment.

• A fragment should configure all the components it needs to work.
• Implies a dedicated de-duplication step to drop components that
are set up by multiple fragments.

• Standalone run-able only if the fragment contains at least one
event-algorithm and the input is readable from a file.

• Often, a minimal wrapper to open the input file is necessary in unit
tests.

• Modularity is still desirable:
• Each service, tool or algorithm has a piece of Python code associated
to configure it.

• There might be cases where the autogenerated one is just enough,
but this hides the dependency chain. 7/16



TYPES OF CONFIGURATION SETTINGS

1. Frequently changed settings (e.g. input file location)
2. Settings affecting multiple components (e.g. if the input file is MC
or data).

3. Settings of main components (e.g. number of threads)
4. Settings specific to a single component changed only during
debugging and in very special situations (a threshold for a single
detector readout element)

• Settings 1-3 are treated as main Athena settings are called flags.
• They are defined in AthenaConfiguration.AllConfigFlags and are
further categorised into domains like Input, Global, Calo, ...

8/16



COMPONENT ACCUMULATOR

• Contains lists of:
• Event algorithms per sequence,
• Conditions algorithms (a special case of the above), services
• Public tools (the use public tools is discouraged),
• A handle to pass private tools on to the caller, parameters to be assigned to
the AppMgr.

• The payload of these lists are auto-generated Python Configurables.
• It knows how to merge itself with another ComponentAccumulator instance.
• Has getter methods to access individual components.
• It is the return value of the methods that configure pieces of the job. May contain
only one algorithm or the entire job!

• Supports running the job fully from a Python script.

9/16



HOW TO WRITE AN CONFIGURATION FRAGMENT: ALGORITHMS

10/16



HOW TO WRITE AN CONFIGURATION FRAGMENT: TOOLS

11/16



DEDUPLICATION

Some components are needed by more than one algorithm (e.g. GeoModelSvc or
IOVDbSvc).

• Each of the self-consistent configuration fragments has to declare them, so
merging sees multiple instances. → That’s ok! Only a problem if the same
component is requested with conflicting configuration.

• The legacy configuration scheme considers any duplication an error.

Strategy:

• If two components compare equal: Ignore the second instance.
• If they have a different name and have different configuration, they are probably
meant to be different and keep both instances.

• Tricky case: same name but different configuration.
• List-properties can have custom methods to unify (merge, concatenate, ...)
them.

• Examples: IOVDbSvc.Folders, GeoModelSvc.DetectorTools.
• All other cases are consider this a name-clash: raise an exception.

12/16



HOW TO RUN A MINIMAL JOBS/SCRIPT

13/16



STEERING PRODUCTION JOBS

• Productions jobs used in PanDA are steered using transforms (e.g. Reco_tf.py,
Sim_tf.py).

• In production configured from AMI (ATLAS Metadata Interface).
• AMI config can be used locally: Reco_tf.py –AMIConfig q442

• Often want to inject some configuration at the start of the job (i.e change some
flags) or at the end of the job (i.e. add or modify algorithms).

• preExec/preInclude: executed after flags ”autoconfiguration” but before
ConfigFlags.lock(), the goal is to override specific flags with non-default
values

• postExec/postInclude: execute arbitrary code on the final CA or merge
additional ones

• In production there should be no pre/postExecs/Includes (with some exceptions
like campaign steering).

14/16



TECHNICAL DETAILS OF STEERING PRODUCTION JOBS - RUCIO DATASETS

• Example of a production job command line (missing here --AMI r14622 ) :

• Rucio dataset example (AMI tags encoded in dataset name):

mc23_13p6TeV:mc23_13p6TeV.601237.PhPy8EG_A14_ttbar_hdamp258p75_allhad.deriv.DAOD_PHYS.

e8514_e8528_s4111_s4114_r14622_r14663_p5737

15/16



SUMMARY AND MATERIAL

• Provided a very brief overview of ATLAS Athena job configuration based on
material of the ATLAS software developer tutorial

• ATLAS software documentation is open at https://atlassoftwaredocs.web.cern.ch/
• Some links:

• https://atlassoftwaredocs.web.cern.ch/guides/ca_configuration/
• https://gaudi-framework.readthedocs.io/en/latest/
• https://gitlab.cern.ch/atlas/athena
• https://gitlab.cern.ch/gaudi/Gaudi

16/16

https://atlassoftwaredocs.web.cern.ch/
https://atlassoftwaredocs.web.cern.ch/guides/ca_configuration/
https://gaudi-framework.readthedocs.io/en/latest/
https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/gaudi/Gaudi

