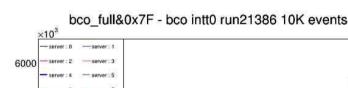
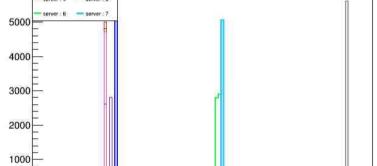
# Post Timing Issue Fixed Run Plan

RIKEN/RBRC

Itaru Nakagawa

# Pedestal run without beam (7/19 day)

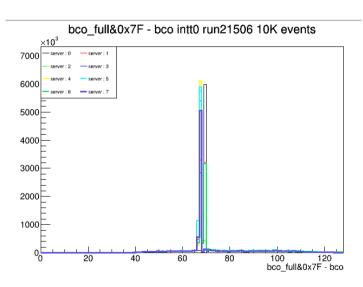

- Pedestal Run
  - Remove all masks (no masks except for no-bias).
  - DAC0=15
  - Run pedestal with the clock trigger ~ 1kHz
  - It the felix hangs, then retry with DAC0=25 without masks.
- Once the pedestal run is successful, then create moderate and tighter versions of mask files.


# Commissioning with Beam

# Interfelix Timing Issue Resolved

100 120 bco\_full&0x7F - bco

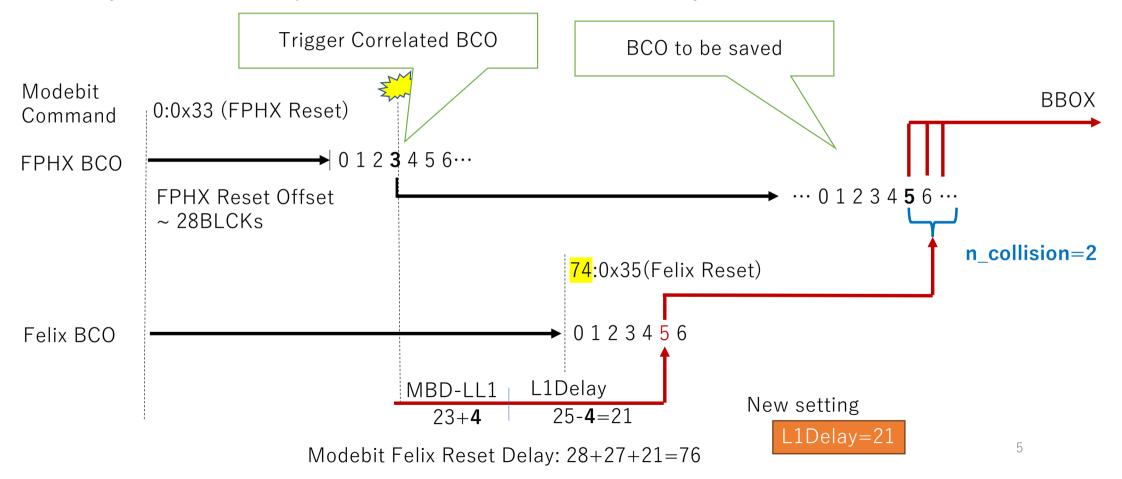
Run # 21386 (global)






60

#### Run # 21506(global mode)






2023/7/14 Raul's new firmware which processes FPHX reset signal in the slow control

# L1Delay Change after MBD-LL1 Timing Tune

2023/7/13 Dan tuned MBD-LL1 timing to match with ZDC trigger by introducing additional delay to MBD-LL1 by 4BCLKs. The compensation is to subtract 4 from the L1Delay 25 for the INTT GTM.



# Timing Re-tune Procedure

STEP1: Run runs with present n\_collision=127 configuration for 3 runs (~5 minutes/run). Check if all 8 servers line up at the same spot of the BCO\_FULL&0x7F-FPHX\_BCO distribution. Make sure the consistency stable and doesn't change run-by-run.

STEP2: Execute modebit scan with n\_collision=0. (~1 hour).

STEP3: Change the setting to be L1Delay=21, modebit=78:0x35 and n\_collision=4. If any of ROC is out of time, then adjust modebit value by +/-1 BCLK (77 or 79).

Run overnight and make sure any timing change. It should be monitored by the BCO\_FULL&0x7F-FPHX\_BCO. If timing change is > 4BCLK, the server may be dropped out.

# Modebit Timing Scan with 8 servers

• Purpose: Actual measurement of felix-to-felix timing difference with all 8 servers.

| Scan #            | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
|-------------------|----|----|----|----|----|----|----|----|----|----|----|
| Modeb<br>it delay | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |

#### **Conditions:**

- L1Delay=21
- n\_collision=0
- Open time=35
- DAC setting 15, 30, 60, 90, 120, 150, 180, 210
- 300 kEvents (5minutes @ 1kHz) /setting x 11 setting ~ 1.5 hour

#### **Preparation and Analysis:**

- Script development to change modebits and log: Jaein
- Time in plots are to be made in felix-by-felix basis: Jaein

# DAC0 Scan

| Run     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
|---------|----|----|----|----|----|----|----|----|----|----|----|
| minutes | 5  | 5  | 5  | 5  | 10 | 20 | 60 | 5  | 5  | 5  | 5  |
| DAC0    | 17 | 16 | 15 | 18 | 20 | 30 | 40 | 14 | 13 | 12 | 11 |
| DAC1    | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| DAC2    | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 |
| DAC3    | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 |
| DAC4    | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 |
| DAC5    | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
| DAC6    | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |
| DAC7    | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 |

Execute DAC0 scan. High threshold runs can be done by shift crews, but low threshold runs may be done by experts.

# Fine delay scan

If the timing peak of each ROC is <2BLKS, then move on to this program

### Fine Scan

- Once n\_collision=0 is established, then we would like to execute the timing scan again for +/-5 BCLKs around modebit=76 and then scan the fine L1 delay.
- Once fine delay scan is completed, Itaru will come up with further studies such as bias scan, gain parameter studies, etc.

# Changing LV1 Delay from the command line

- # itaru -- ssh ssh OPC0 -- 129×60 hnxrc@opc0:~\$ gl1\_gtm\_client help show this help text fpgaversion show firmware version otm status returns a convenient status bitmap otm start gtm\_start n gtm\_startrun All-in-one reset counter/scheduler, and start gtm\_startrum n gtm\_startrun for vGTM n when in local mode GTM global stop GTM n stop in local mode gtm\_stop atm stop n enable vGTM n gtm\_enable n disable vGTM n otm disable n gtm\_set\_dcmbusymask n value set the busy mask for vGTM n gtm\_get\_dcmbusymask n get the busy mask for vGTM n gtm\_set\_l1delay n value set the L1 delay for vGTM n gtm\_get\_l1delay n get the L1 for vGTM n gtm\_set\_finedelay n value set the fine delay for vGTM n gtm\_get\_finedelay n get the fine delay for vGTM n gtm\_set\_meb n set GTM multi-event buffering value gtm\_get\_meb get GTM multi-event buffering value gtm\_set\_accept\_l1 n value set the GTM to accept global L1 triggers gtm\_get\_accept\_l1 n get the accept value gli\_set\_scaledown trigger value set the scaldeown for trigger n to value gl1\_get\_scaldeown trigger get the value of trigger set the operating mode (global=1/local=0) gtm\_set\_mode value gtm\_get\_mode get the operating mode gtm\_load\_modebits n file show an interpreted view of the loaded modebits gtm\_show\_modebits n otm reset counters Reset Counters gtm\_reset\_schedulers Reset Schedulers Reset Scheduler n in local mode gl1\_set\_counterenablemask high32bit low32bit set the counter enablemask gl1\_get\_counterenablemask get the counter enable masks gl1\_set\_register addr value gl1\_get\_register addr set the GL1 address to value (dangerous!) get the value of GL1 address gtm\_set\_register n addr value set the GTM n address to value (dangerous!) gtm\_get\_register n addr get the value of GTM n address gtm\_fake\_trigger generate a GTM trigger gtm\_fullstatus for the benfit of GUIs - get a full status report with one call -- client version is
- No GUI is available
- Change the LV1 delay from command line

| command                   | explanation                    |       |
|---------------------------|--------------------------------|-------|
| gtm_set_l1delay n value   | set the L1 delay for vGTM n 17 | .76ns |
| gtm_get_l1delay n         | get the L1 for vGTM n          |       |
| gtm_set_finedelay n value | set the fine delay for vGTM n  | 80ps  |
| gtm_get_finedelay n       | get the fine delay for vGTM n  |       |

### BCO Phase Scan

L1 Coase Delay= L1Delay

| Delay Set<br>#        | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13      |
|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| L1 Coase<br>Delay     | 123     | 123     | 124     | 124     | 125     | 125     | 126     | 126     | 127     | 127     | 128     | 128     | 129     |
| Fine Delay            | 0       | 111     | 0       | 111     | 0       | 111     | 0       | 111     | 0       | 111     | 0       | 111     | 0       |
| Total Delay<br>[BCLK] | 20.50   | 20.58   | 20.67   | 20.75   | 20.83   | 20.92   | 21.00   | 21.08   | 21.17   | 21.25   | 21.33   | 21.42   | 21.50   |
| Total Delay<br>[ns]   | 2180.85 | 2189.73 | 2198.58 | 2207.46 | 2216.31 | 2225.19 | 2234.04 | 2242.91 | 2251.77 | 2260.65 | 2269.50 | 2278.38 | 2287.23 |

- L1Delay=21
- n\_collision=0
- Modebit 76:0x35
- 300 kEvents (5minutes @ 1kHz) x 13 runs  $\sim$  1.5 hour

Perhaps we do this scan with n\_collision=4 at modebit=78 and analyze data in offline.