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Momentum space methods in CFT allow to describe quite efficiently the
correlators containing insertions of stress energy tensor (T) and/or axial vector 
currents, and affected by conformal and chiral anomalies. (TTT, TTJ5, J5JJ,TTTT) 

Analysis have been performed up to 4-point functions (4T). 

The hierarchy of the conformal Ward identities (CWIs) constraining such 
correlation functions have been investigated using both free field theory 
realizations and, nonperturbatively, using their CWIs

By this approach it has also been shown the inconsistency of anomaly 
induced actions in the Riegert and in the Fradkin-Vilkovisky beyond 3-point 
functions. Corrections identified for a specific correlator (TTJJ)

Abstract

We will overview the methodology and the main results in this area, and the central 
role played by anomaly poles in determining the structure of these interactions. 

Yangian Symmetry in momentum space (Maglio, CC) On Some Hypergeometric Solutions of the Conformal Ward
Identities of Scalar 4-point Functions in Momentum Space•JHEP 09 (2019) 107 e-Print: 1903.05047

https://inspirehep.net/literature/1724697
https://inspirehep.net/literature/1724697
https://arxiv.org/abs/1903.05047


LOVELOCK

QUADRATIC CORRECTIONS TO GRAVITY 
ASSOCIATED WITH THE TRACE ANOMALY

0/0 LIMIT



TOPOLOGICAL TERMS CAN BE RENDERED DYNAMICS AT D=4, D=6, 
VIA A 0/0 PROCEDURE. 

He result is a form od dilaton gravity, that can be rendered nonlocal by removing the dilaton. 

PoS, CC 2023



Anomalies are quantum violation of classical conservation laws.

For instance, for chiral anomalies, they are related to the presence of chiral interactions  
that need to be canceled in the case of chiral gauge theories such as the Standard Model, 
but they are perfectly fine for currents associated with global symmetries.

A candidate for dark matter, the axion, comes from the spontaneous breaking of a global U(1) (PQ) symmetry 
at a large scale, with a physical Nambu Goldstone mode, whose potential is slightly tilted 
(a vacuum misalignment) at the QCD confinement phase transition scale, through instanton effects.  

Anomalies can be characterised both by topological and non-topological contributions.  
For example, a chiral anomaly is topological (Pontryagin density) a conformal anomaly is related both to 
topological (Euler Poincare’ density) and to non topological terms (Weyl tensor squared)

The most important dynamical character of the anomaly, from the point of view of an anomaly amplitude, 
appears in momentum space and is associated with anomaly poles. 
Anomaly cancelation can be interpreted as cancelation of anomaly poles of a certain interaction. 
The interaction mediated by the anomaly pole is, obviously, nonlocal in cooordinate space

Few phenomenological facts about anomalies 
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At quantum level these conservation equations are violated. 
A certain gauge global or local symmetry is violated at quantum level 
in the presence of chiral fermions.  

Various methods of computations of such anomalies. Quantum averages are computed 
in the presence of background fields (gravitational and/or external gauge fields)  

CHIRAL ANOMALY

Similar situation for other symmetries. Diffeomorphism invariance of a certain classical 
action requires that the stress energy tensor is covariantly conserved.
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Axial-vector and Vector currents
Conserved at classical level
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This is a requirement that should 
be respected all the time. 
But if the action has a conformal symmetry, 
then its trace should vanish at classical level.    gµν〈T

µν〉 = β(g)FF

gµνT
µν

= 0. gµν〈T
µν〉 #= 0.

There can be a Trace anomaly

∇µT
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= 0



In the presence of a classical external gravitational field, the anomaly functionals include other contributions

Euler Poincare’ and 
Weyl Tensor

These constraints generate, by a functional expansion of the quantum averages wrt the external fileds, 
An infinite set of anomalous Ward identities which are hierarchical.

In the case of a trace anomaly, when the classical conformal symmetry of the action is violated at quantum 
level, we derive an infinite set of conformal Ward identities (CWIs) that constrain these correlators.

Notice that the one can formulated the breaking of conformal symmetry as a violation of Weyl invariance 
of a certain action. In each free falling frame, one reobtains, one recovers the ordinary conformal WIs of flat space    



Modified Maxwell's equations

Axion  E&M

Similar effects are possible in gravity (Faraday rotations on GWs).   (Creti, Tommasi, CC). gravitomagnetism



Rotation of the polarization plane 



Parity even and parity odd terms in the trace anomaly conjectures since the 70’s 
(Deser Isham Duff) 
Source of parity violation generate an issue with unitarity in free field theory realizations 
(e.g. the Standard Model) due to the fact that the anomaly coefficients are imaginary.

Several subtle issues where identified since the 80’s (M. Duff, P. van Nieuwenhuizen) 
concerning topological contributions to the anomaly in free field theories. 

Equivalent field redefinitions at classical level generate different anomalies.

Important issues that need to be explored in the context of free CFT realizations 
in different dimensions.  

Source of CP violaton in the 
Early universe 

FF̃ = kE · B E and B even under C, but E odd and B even under P  >  CP violation



The Standard Model, even with complex phases in the CKM matrix, is unable to generate 
significant sources of CP violation. 

However, the perturbative realizations of correlators  such as T5 JJ, seem to indicate that they are zero
In free field theory (Armillis, Delle Rose, CC) , (Bastianelli, Chiese) ,  (Abdallah, Franchino-Vinas, Frob)

Issues with unitarity due to  complex f’s : They are non zero (L. Bonora et Al) 

CWIs seem to indicate that they can be nonzero (Lionetti, maglio, CC) (more later) 
It is not clear whether such CFT’s, even for real f’s are consistent. 



QUESTION:
What happens when conformal symmetry is broken by an 
anomaly ?
Momentum space techniques 
are the most effcient way to investigate correlation 
functions affected by an anomaly.  

We will show that chiral and anomaly interactions can be 
completely determined by CFT + anomaly poles 

Four-point functions of gravitons and conserved currents of CFT in 
momentum space: testing the nonlocal action with the TTJJ
•Eur.Phys.J.C 83 (2023) 5, 427 e-Print: 2212.12779
(Maglio, Tommasi, CC)

Topological corrections and conformal backreaction in the Einstein 
Gauss–Bonnet/Weyl theories of gravity at D=4
•Eur.Phys.J.C 82 (2022) 12, 1121 e-Print: 2203.04213
(Maglio, Theofilopoulos,CC)

Einstein Gauss-Bonnet theories as ordinary, Wess-Zumino conformal 
anomaly actions
•Phys.Lett.B 828 (2022) 137020 e-Print: 2201.07515 (Maglio, CC)

The conformal anomaly action to fourth order (4T) in d=4 in momentum space
•Eur.Phys.J.C 81 (2021) 8, 740 e-Print: 2103.13957 (Maglio, Theofilopoulos, CC)

Conformal field theory in momentum space and anomaly actions in gravity: The 
analysis of three- and four-point function
• Phys.Rept. 952 (2022) e-Print: 2005.06873 (Maglio, CC)

CFT Correlators and CP-Violating Trace Anomalies 2307.03038 [hep-th] 
(Lionetti, Maglio, CC)

Parity-odd 3-point functions from CFT in momentum 
space and the chiral anomaly, Lionetti, Maglio, CC)
•Eur.Phys.J.C 83 (2023) 6, 502 e-Print: 2303.10710

Work in preparation with M. Creti, R. Tommasi, D. Melle (4T) and Lionetti, Maglio (J5TT)

https://inspirehep.net/literature/2618240
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The external Wis determine the diagram. No need for 
Renormalization. 

Feynman expansion



Signatures of Chiral and Conformal anomalies 

AVV diagram 

Some are finite by power
counting. 
 A1 and A2 are not 

If we change the parameterization of the loop momentum, A1 and A2 change.  



Impose vector Ward identities 

Then A1 ans A2 are fixed 
without any renormalization

No renormalization: Chiral anomalies are topological, similarly to the Euler density in the conformal anomaly  

Anomalies come from ultralocal terms



Davydychev

s1 and s2 are vector currents  virtualities 



This is not the only parameterization. A second one is the longitudinal/transverse (LT) decomposition 

Tensor structures involved 
In the LT parameterization

De Rafael et al

developed in the study of g-2 of the muon 

It corrects an erro r in the book by Kerson Huang on 
particle theory

Only the L  part contributes to the Ward Identity



Armlllis, Delle Rose, CC

Notice that if you change the parameterization of 
The momentum in the loop, A1 and A2 will shift 
by the same amount, but WL will not change. 

Notice the presence of a single pole in the 
Longitudinal component of the AVV diagram.

Topology comes through the Schouten relations



The signature of the chiral anomaly is in the the generation of 1 pole in the axial vector channel







Similar pattern
in a superconformal 
theory

Chiral and trace anomalies are related to anomaly poles. 



Similar pattern as for the TJJ correlator, just more complex. 
One single form factor generates the anomaly



If we move away from the conformal limit
And give the fields a mass “m” then 
The anomaly form factor is more 
complicated



SUM RULE 



EXACT SUM RULE 

The form factor that 
carries the chiral 
And conformal anomaly 
away from the critical point c
 shows a branch cut. 

The spectral dentity exhibits a pole 
As mà0 

Delle Rose, CC

THESE ANALYSIS 
ARE PURELY 
PERTURBATIVE. 



Trace Anomaly, Massless Scalars and the Gravitational Coupling of QCD.  
Armillis, Delle Rose, CC
#Published in: Phys.Rev.D 82 (2010) 064023, e-Print: 1005.4173 [hep-ph]

https://inspirehep.net/literature/856095
https://arxiv.org/abs/1005.4173


Functional derivation of 
WIs

Semiclassical 
Formulation via 
the effective action

WI in momentum space



contributions

Fourier transform of  second variation of FF



Pole in the quark sector

Similar pole in the gluon sector 

Notice that the 
residui, combined, 
equal the beta 
function 





PoS Corfu 2022

Paneitz operator 

Weyl invariant if acting on conformal scalars (ie fields of vanishing 
scaling dimensions)



CFT in coordinate  space (scalar primary operators) in d=4 

dilatation Special conformal

The rederivation of these expressions in momentum space is in
Solving the Conformal Constraints for Scalar Operators in Momentum Space and 
the Evaluation of Feynman's Master Integrals
•JHEP 07 (2013) 011 e-Print: 1304.6944 (Delle Rose, Mottola, Serino, CC)

No anomalies yet and no spin !
Recovering the correlators from momentum 
space may not be easy as in coordinate space, 
But once you do it, you can connect with 
Amplitudes and test the expressions against 
Free field theory realizations 

https://inspirehep.net/literature/1230355
https://inspirehep.net/literature/1230355
https://arxiv.org/abs/1304.6944


Transform the eqs to momentum space
and solve them. They can be mapped
to generalized hypergeometric functions  

ansatz

General solution in terms of a single constant 
C123

No anomalies and no spin

Delle Rose, Serino, Mototla, CC



4 point functions Maglio, C. C.

For some special choices of the scaling dimensions 
We can solve the equations 

JHEP 09 (2019) 107 e-Print: 1903.05047

One specific structure. There are 3 of them. 

https://arxiv.org/abs/1903.05047


YANGIAN SYMMETRY: 4 point functions can also be fixed in the scalar case, probably 
The reconstruction can be also performed in the tensor case  

DUAL CONFORMAL/CONFORMAL



Maglio, CC

Maglio, CC



Tensor correlators in coordinate space had been studied long ago by Osborn and Petkou. 
The important step in these analsys was the inclusion of the anomaly contribution in coordinate space 
Implications of conformal invariance in field theories for general dimensions
•Annals Phys. 231 (1994) 311-362 e-Print: hep-th/9307010

Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions
•Nucl.Phys.B 483 (1997) 431-474 e-Print: hep-th/9605009 (Erdmenger Osborn)

Anomalies come from the coalescence of all the external coordinates.

The inclusion of anomalies 

Not so practical beyond 3 point functions 

https://inspirehep.net/literature/35315
https://arxiv.org/abs/hep-th/9307010
https://inspirehep.net/literature/418218
https://arxiv.org/abs/hep-th/9605009


while naive scale invariance gives the traceless condition

gµ⌫ hTµ⌫i = 0. (3.5)

These have been the only constraints taken into account in previous perturbative studies of the TJJ
[5, 4, 22] and TTT [29]. The functional differentiation of (3.4) and (3.5) allows to derive ordinary
Ward identities for the various correlators. For the three point function case these take the form

@⌫hTµ⌫(x1)T
⇢�(x2)T

↵�(x3)i =


hT ⇢�(x1)T

↵�(x3)i@µ�(x1, x2) + hT↵�(x1)T
⇢�(x2)i@µ�(x1, x3)

�

�

�µ⇢hT ⌫�(x1)T

↵�(x3)i + �µ�hT ⌫⇢(x1)T
↵�(x3)i

�
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�

�µ↵hT ⌫�(x1)T

⇢�(x2)i + �µ�hT ⌫↵(x1)T
⇢�(x2)i

�
@⌫�(x1, x3) . (3.6)

In order to move to momentum space we fix some conventions. The Fourier transform of the correlators
is defined as

hTµ1⌫1(p1) Tµ2⌫2(p2) Tµ3⌫3(p3)i =

Z
ddx1d

dx2d
dx3e

i(p1·x1+p2·x2+p3·x3) hTµ1⌫1(x1) Tµ2⌫2(x2) Tµ3⌫3(x3)i

(3.7)

and similarly for the 2-point function. Translational invariance introduces an overall �(P ) with P being
the sum of all the (incoming) momenta, with the generation of derivative terms �0(P ), after the action
of the special conformal transformations on the integrand. Such terms can be investigated rigorously
using the theory of tempered distributions, formulated using a symmetric basis. The analysis has been
presented in [7] for a Gaussian basis, to which we refer for more details. In our conventions, we have
chosen p3 as the dependent momentum p3 ! �p1 � p2. Eq. (3.6) becomes

p1⌫1 hTµ1⌫1(p1) Tµ2⌫2(p2) Tµ3⌫3(p3)i = �pµ1
2 hTµ2⌫2(p1 + p2)T

µ3⌫3(p3)i � pµ1
3 hTµ2⌫2(p2)T

µ3⌫3(p1 + p3)i
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µ2⌫2(p2)i + �µ1µ3 hT ⌫3↵(p1 + p3)T

µ2⌫2(p2)i] .
(3.8)

In the next section, in order to clarify that differentiation in p3 has to be performed with the chain
rule, we will denote with p̄µ3 ⌘ �pµ1 � pµ2 , the dependent momentum, and the independent 4-momenta
will be pµ1 and pµ2 . Concerning the naive identity (3.5), it generates the non-anomalous condition

gµ1⌫1 hTµ1⌫1(p1) Tµ2⌫2(p2) Tµ3⌫3(p3)i = 0 (3.9)

valid in the d 6= 4 case.
After renormalization this equation is modified by the contribution of the conformal anomaly, given
by the general expression
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X
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by considering only the scheme independent terms with

�a(S) = �3⇡2

720
, �b(S) =

⇡2

720
,

�a(F ) = �9⇡2

360
, �b(F ) =

11⇡2

720

�a(G) = �18⇡2

360
, �b(G) =

31⇡2

360
(3.11)

being the contributions to the � functions coming from scalars (S), fermions (F ) and vectors (G). We
have defined the two tensors

C2 = RabcdR
abcd � 4

d � 2
RabR

ab +
2

(d � 2)(d � 1)
R2, E = RabcdR

abcd � 4RabR
ab + R2 (3.12)

being the square of the Weyl conformal tensor and the Euler-Poincaré density respectively, while Rabcd

is the Riemann curvature tensor and Rab and R are the Ricci tensor and the Ricci scalar, respectively.
Then we get the anomalous WI

gµ1⌫1 hTµ1⌫1(p1)T
µ2⌫2(p2)T

µ3⌫3(p3)i
= 4Aµ2⌫2µ3⌫3(p2, p3) � 2 hTµ2⌫2(p1 + p2)T

µ3⌫3(p3)i � 2 hTµ2⌫2(p2)T
µ3⌫3(p1 + p3)i

= 4


�a

⇥
C2

⇤µ2⌫2µ3⌫3(p2, p3) + �b

⇥
E
⇤µ2⌫2µ3⌫3(p2, p3)

�

� 2 hTµ2⌫2(p1 + p2)T
µ3⌫3(p3)i � 2 hTµ2⌫2(p2)T

µ3⌫3(p1 + p3)i . (3.13)

We just remark that the solutions of all the conformal constraints, in this study, are obtained by working
with the non-anomalous expressions of the corresponding CWI’s, while the anomaly contributions, as
in (3.13), are obtained only after taking the d ! 4 limit of the general solution and the inclusion of the
corresponding counterterms. All these points will be investigated rather thoroughly in the following
sections. We briefly pause to comment on the relation between the current and previous analysis [29] of
the TTT in free field theory. The expression for the TTT given in [29] has been presented in a complete
form only for the gravitational amplitude g1(p1) ! g2(p2) + g3(p3), with g2 and g3 on-shell gravitons,
which is quite involved. The expression given in [29] breaks the full symmetry of the correlator and
requires a basis of 13 form factors, which is nonminimal. A symmetric and manageable reconstruction
of this vertex requires a complete reanalysis of the correlator, with the inclusion also of the special
conformal and dilatation constraints, which lower the number of independent form factors to a minimal
number, which will be 5. This is the step that we are going to undertake starting from the next section.

4 Special conformal and dilatation WI’s

Dilatation and special conformal WI’s in position space can be derived in various ways, and the
transition to momentum space can be made rigorous by taking suitable distributional limits of the
derivative of the Dirac delta functions, as discussed by us in [7]. In coordinate space, for the TTT , the
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and of spin parts. In momentum space this becomes with �i, i = 1, 2, 3 being the scaling dimensions
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Notice that the spin part acts only on two of the three tensors, in this case Tµ1⌫1(p1) and Tµ2⌫2(p2),
leaving Tµ3⌫3 as a spin singlet [7]. Notice that the Leibnitz rule for the action of the conformal operator
K is violated and the differentiation respect to the third momentum is performed implicitly. The final
result shown above, as explictly discussed in [7], is a consequence of the Lorentz WI, which has to be
used quite extensively. This takes the form
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being the generators of the symmetry, separated into the angular momentum component and in the
spin part, with ⌃̄ being the spin generators of SO(4) in the vector representation
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by considering only the scheme independent terms with
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(3.11)

being the contributions to the � functions coming from scalars (S), fermions (F ) and vectors (G). We
have defined the two tensors
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d � 2
RabR

ab +
2

(d � 2)(d � 1)
R2, E = RabcdR

abcd � 4RabR
ab + R2 (3.12)

being the square of the Weyl conformal tensor and the Euler-Poincaré density respectively, while Rabcd

is the Riemann curvature tensor and Rab and R are the Ricci tensor and the Ricci scalar, respectively.
Then we get the anomalous WI
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We just remark that the solutions of all the conformal constraints, in this study, are obtained by working
with the non-anomalous expressions of the corresponding CWI’s, while the anomaly contributions, as
in (3.13), are obtained only after taking the d ! 4 limit of the general solution and the inclusion of the
corresponding counterterms. All these points will be investigated rather thoroughly in the following
sections. We briefly pause to comment on the relation between the current and previous analysis [29] of
the TTT in free field theory. The expression for the TTT given in [29] has been presented in a complete
form only for the gravitational amplitude g1(p1) ! g2(p2) + g3(p3), with g2 and g3 on-shell gravitons,
which is quite involved. The expression given in [29] breaks the full symmetry of the correlator and
requires a basis of 13 form factors, which is nonminimal. A symmetric and manageable reconstruction
of this vertex requires a complete reanalysis of the correlator, with the inclusion also of the special
conformal and dilatation constraints, which lower the number of independent form factors to a minimal
number, which will be 5. This is the step that we are going to undertake starting from the next section.

4 Special conformal and dilatation WI’s

Dilatation and special conformal WI’s in position space can be derived in various ways, and the
transition to momentum space can be made rigorous by taking suitable distributional limits of the
derivative of the Dirac delta functions, as discussed by us in [7]. In coordinate space, for the TTT , the

8

by considering only the scheme independent terms with

�a(S) = �3⇡2

720
, �b(S) =

⇡2

720
,

�a(F ) = �9⇡2

360
, �b(F ) =

11⇡2

720

�a(G) = �18⇡2

360
, �b(G) =

31⇡2

360
(3.11)

being the contributions to the � functions coming from scalars (S), fermions (F ) and vectors (G). We
have defined the two tensors

C2 = RabcdR
abcd � 4

d � 2
RabR

ab +
2

(d � 2)(d � 1)
R2, E = RabcdR

abcd � 4RabR
ab + R2 (3.12)

being the square of the Weyl conformal tensor and the Euler-Poincaré density respectively, while Rabcd

is the Riemann curvature tensor and Rab and R are the Ricci tensor and the Ricci scalar, respectively.
Then we get the anomalous WI

gµ1⌫1 hTµ1⌫1(p1)T
µ2⌫2(p2)T

µ3⌫3(p3)i
= 4Aµ2⌫2µ3⌫3(p2, p3) � 2 hTµ2⌫2(p1 + p2)T

µ3⌫3(p3)i � 2 hTµ2⌫2(p2)T
µ3⌫3(p1 + p3)i

= 4


�a

⇥
C2

⇤µ2⌫2µ3⌫3(p2, p3) + �b

⇥
E
⇤µ2⌫2µ3⌫3(p2, p3)

�

� 2 hTµ2⌫2(p1 + p2)T
µ3⌫3(p3)i � 2 hTµ2⌫2(p2)T

µ3⌫3(p1 + p3)i . (3.13)

We just remark that the solutions of all the conformal constraints, in this study, are obtained by working
with the non-anomalous expressions of the corresponding CWI’s, while the anomaly contributions, as
in (3.13), are obtained only after taking the d ! 4 limit of the general solution and the inclusion of the
corresponding counterterms. All these points will be investigated rather thoroughly in the following
sections. We briefly pause to comment on the relation between the current and previous analysis [29] of
the TTT in free field theory. The expression for the TTT given in [29] has been presented in a complete
form only for the gravitational amplitude g1(p1) ! g2(p2) + g3(p3), with g2 and g3 on-shell gravitons,
which is quite involved. The expression given in [29] breaks the full symmetry of the correlator and
requires a basis of 13 form factors, which is nonminimal. A symmetric and manageable reconstruction
of this vertex requires a complete reanalysis of the correlator, with the inclusion also of the special
conformal and dilatation constraints, which lower the number of independent form factors to a minimal
number, which will be 5. This is the step that we are going to undertake starting from the next section.

4 Special conformal and dilatation WI’s

Dilatation and special conformal WI’s in position space can be derived in various ways, and the
transition to momentum space can be made rigorous by taking suitable distributional limits of the
derivative of the Dirac delta functions, as discussed by us in [7]. In coordinate space, for the TTT , the

8

by considering only the scheme independent terms with

�a(S) = �3⇡2

720
, �b(S) =

⇡2

720
,

�a(F ) = �9⇡2

360
, �b(F ) =

11⇡2

720

�a(G) = �18⇡2

360
, �b(G) =

31⇡2

360
(3.11)

being the contributions to the � functions coming from scalars (S), fermions (F ) and vectors (G). We
have defined the two tensors

C2 = RabcdR
abcd � 4

d � 2
RabR

ab +
2

(d � 2)(d � 1)
R2, E = RabcdR

abcd � 4RabR
ab + R2 (3.12)

being the square of the Weyl conformal tensor and the Euler-Poincaré density respectively, while Rabcd

is the Riemann curvature tensor and Rab and R are the Ricci tensor and the Ricci scalar, respectively.
Then we get the anomalous WI

gµ1⌫1 hTµ1⌫1(p1)T
µ2⌫2(p2)T

µ3⌫3(p3)i
= 4Aµ2⌫2µ3⌫3(p2, p3) � 2 hTµ2⌫2(p1 + p2)T

µ3⌫3(p3)i � 2 hTµ2⌫2(p2)T
µ3⌫3(p1 + p3)i

= 4


�a

⇥
C2

⇤µ2⌫2µ3⌫3(p2, p3) + �b

⇥
E
⇤µ2⌫2µ3⌫3(p2, p3)

�

� 2 hTµ2⌫2(p1 + p2)T
µ3⌫3(p3)i � 2 hTµ2⌫2(p2)T

µ3⌫3(p1 + p3)i . (3.13)

We just remark that the solutions of all the conformal constraints, in this study, are obtained by working
with the non-anomalous expressions of the corresponding CWI’s, while the anomaly contributions, as
in (3.13), are obtained only after taking the d ! 4 limit of the general solution and the inclusion of the
corresponding counterterms. All these points will be investigated rather thoroughly in the following
sections. We briefly pause to comment on the relation between the current and previous analysis [29] of
the TTT in free field theory. The expression for the TTT given in [29] has been presented in a complete
form only for the gravitational amplitude g1(p1) ! g2(p2) + g3(p3), with g2 and g3 on-shell gravitons,
which is quite involved. The expression given in [29] breaks the full symmetry of the correlator and
requires a basis of 13 form factors, which is nonminimal. A symmetric and manageable reconstruction
of this vertex requires a complete reanalysis of the correlator, with the inclusion also of the special
conformal and dilatation constraints, which lower the number of independent form factors to a minimal
number, which will be 5. This is the step that we are going to undertake starting from the next section.

4 Special conformal and dilatation WI’s

Dilatation and special conformal WI’s in position space can be derived in various ways, and the
transition to momentum space can be made rigorous by taking suitable distributional limits of the
derivative of the Dirac delta functions, as discussed by us in [7]. In coordinate space, for the TTT , the

8

Aomalous conformal WI

Are affected by the anomaly 



special CWI’s take the form
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written in terms of a scalar contribution
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and of spin parts. In momentum space this becomes with �i, i = 1, 2, 3 being the scaling dimensions
of 3 generic rank-2 operators - here fixed to be d for the Tµ⌫ -
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Notice that the spin part acts only on two of the three tensors, in this case Tµ1⌫1(p1) and Tµ2⌫2(p2),
leaving Tµ3⌫3 as a spin singlet [7]. Notice that the Leibnitz rule for the action of the conformal operator
K is violated and the differentiation respect to the third momentum is performed implicitly. The final
result shown above, as explictly discussed in [7], is a consequence of the Lorentz WI, which has to be
used quite extensively. This takes the form
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being the generators of the symmetry, separated into the angular momentum component and in the
spin part, with ⌃̄ being the spin generators of SO(4) in the vector representation

�
⌃̄⇢�

�
µ↵

= i (�⇢µ��↵ � �⇢↵��µ) . (4.6)

In the case of the TTT this gives
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and takes the form in momentum space
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Similarly, the dilatation WI in coordinate space
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can be rewritten in momentum space in the form
2
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5 hTµ1⌫1(p1) Tµ2⌫2(p2) Tµ3⌫3(p̄3)i = 0. (4.10)

5 Reconstruction in the BMS approach

In this section we are going to review the reconstruction method of [26] with the inclusion of extra
derivations and details specific to the TTT case, which may illustrate more clearly its formulation. The
basic idea of the approach is to introduce a symmetric decomposition of the correlator in terms of its
transverse traceless and longitudinal sectors. A second ingredient is that the second order differential
equations (primary WI’s) which act on the corresponding form factors separate from the first order
ones coming from the conservation Ward identities (secondary WI’s).
For this one needs the transverse, transverse-traceless and longitudinal projectors
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↵� + ⌧µ⌫
↵� . (5.2)

The previous identities allows to decompose a symmetric tensor into its transverse traceless (via ⇧),
longitudinal (via L) and trace parts (via ⌧), or on the sum of the combined longitudinal and trace
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and takes the form in momentum space
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
p⌫j

@

@pjµ
� pµj

@

@pj⌫

�
hTµ1⌫1(p1) Tµ2⌫2(p2) Tµ3⌫3(p̄3)i

+ 2
⇣
�⌫↵1

�µ(µ1 � �µ↵1
�⌫(µ1

⌘
hT ⌫1)↵1(p1) Tµ2⌫2(p2) Tµ3⌫3(p̄3)i

+ 2
⇣
�⌫↵2

�µ(µ2 � �µ↵2
�⌫(µ2

⌘
hT ⌫2)↵2(p2) Tµ3⌫3(p̄3) Tµ1⌫1(p1)i

+ 2
⇣
�⌫↵3

�µ(µ3 � �µ↵3
�⌫(µ3

⌘
hT ⌫3)↵3(p̄3) Tµ1⌫1(p1) Tµ2⌫2(p2)i = 0. (4.8)

Similarly, the dilatation WI in coordinate space
nX

j=1

 
i x↵

j
@

@x↵
j

+ �j

!
hTµ1⌫1(x1) Tµ2⌫2(x2) Tµ3⌫3(x3)i = 0. (4.9)

can be rewritten in momentum space in the form
2

4
3X

j=1

�j � 2d �
2X

j=1

p↵j
@

@p↵
j

3

5 hTµ1⌫1(p1) Tµ2⌫2(p2) Tµ3⌫3(p̄3)i = 0. (4.10)

5 Reconstruction in the BMS approach

In this section we are going to review the reconstruction method of [26] with the inclusion of extra
derivations and details specific to the TTT case, which may illustrate more clearly its formulation. The
basic idea of the approach is to introduce a symmetric decomposition of the correlator in terms of its
transverse traceless and longitudinal sectors. A second ingredient is that the second order differential
equations (primary WI’s) which act on the corresponding form factors separate from the first order
ones coming from the conservation Ward identities (secondary WI’s).
For this one needs the transverse, transverse-traceless and longitudinal projectors

⇡µ
↵ = �µ↵ � pµp↵

p2
, ⇡̃µ

↵ =
1

d � 1
⇡µ
↵

⇧µ⌫
↵� =

1

2

⇣
⇡µ
↵⇡⌫

� + ⇡µ
�⇡⌫

↵

⌘
� 1

d � 1
⇡µ⌫⇡↵� ,

Iµ⌫
↵ =

1

p2


2p(µ�⌫)↵ � p↵

d � 1
(�µ⌫ + (d � 2)

pµp⌫

p2
)

�

Iµ⌫
↵� = Iµ⌫

↵ p� =
p�
p2

(pµ�⌫↵ + p⌫�µ↵) �
p↵p�
p2

✓
�µ⌫ + (d � 2)

pµp⌫

p2

◆

Lµ⌫
↵� =

1

2

⇣
Iµ⌫
↵� + Iµ⌫

�↵

⌘
⌧µ⌫
↵� = ⇡̃µ⌫�↵� (5.1)

�µ⌫↵� = ⇧µ⌫
↵� + ⌃µ⌫

↵�

⌃µ⌫
↵� ⌘ Lµ⌫

↵� + ⌧µ⌫
↵� . (5.2)

The previous identities allows to decompose a symmetric tensor into its transverse traceless (via ⇧),
longitudinal (via L) and trace parts (via ⌧), or on the sum of the combined longitudinal and trace
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projectors

contributions (via ⌃). Each insertion of stress energy tensor is separated into its longitudinal, transverse
traceless and trace parts, in the notation of [26]

Tµ⌫ = tµ⌫ + tµ⌫loc (5.3)

with

tµ⌫loc(p) =
pµ

p2
Q⌫ +

p⌫

p2
Qµ � pµp⌫

p4
Q +

⇡µ⌫

d � 1
(T � Q

p2
)

= ⌃µ⌫
↵�T↵� (5.4)

and
Qµ = p⌫T

µ⌫ , T = �µ⌫T
µ⌫ , Q = p⌫pµTµ⌫ (5.5)

tµ⌫loc = Iµ⌫
↵ Q↵ +

⇡µ⌫

d � 1
T. (5.6)

We turn to the case of the the 3-graviton vertex. By acting with these projectors on the TTT , the
3-point function is divided into two parts: the transverse-traceless part and the local part (indicated
by subscript loc) expressible through the transverse and trace Ward Identities. We will be using the
suffix "i" in Ki, ⇡i, ⇧i to indicate operators of momentum pi. In the notation of [26], the transverse
traceless contributions are denoted as

htµ1⌫1(p1)t
µ2⌫2(p2)t

µ3⌫3(p3)i = ⇧1
µ1⌫1
↵1�1

⇧2
µ2⌫2
↵2�2

⇧3
µ3⌫3
↵3�3

hT↵1�1(p1)T
↵2�2(p2)T

↵3�3(p3)i (5.7)

while the local contributions, defined by either longitudinal or trace projections, are indicated as

htµ1⌫1
loc (p1)T

µ2⌫2(p2)T
µ3⌫3(p3)i = ⌃µ1⌫1

1↵1�1
hT↵1�1(p1)T

µ2⌫2(p2)T
µ3⌫3(p3)i

htµ1⌫1
loc (p1)t

µ2⌫2
loc (p2)T

µ3⌫3(p3)i = ⌃1
µ1⌫1
↵1�1

⌃2
µ2⌫2
↵2�2

hT↵1�1(p1)T
↵2�2(p2)T

µ3⌫3(p3)i

htµ1⌫1
loc (p1)t

µ2⌫2
loc (p2)t

µ3⌫3
loc (p3)i = ⌃1

µ1⌫1
↵1�1

⌃2
µ2⌫2
↵2�2

⌃3
µ3⌫3
↵3�3

hT↵1�1(p1)T
↵2�2(p2)T

↵3�3(p3)i . (5.8)

Using the projectors ⇧ one can write the most general form of the transverse-traceless part as

htµ1⌫1(p1) tµ2⌫2(p2) tµ3⌫3(p3)i = ⇧µ1⌫1
↵1�1

(p1)⇧
µ2⌫2
↵2�2

(p2)⇧
µ3⌫3
↵3�3

(p3) X↵1�1 ↵2�2 ↵3�3 , (5.9)

where X is a general tensor of rank six built from the metric and momenta. One can enumerate all
possible tensors that can appear in X, and simplify the expansion by observing that whenever a tensor
component of X contains at least one of the following tensors

�↵1�1 , �↵2�2 , �↵3�3 , p↵1
1 , p�1

1 , p↵2
2 , p�2

2 , p↵3
3 , p�3

3 (5.10)

it will vanish after contraction with the projectors, if these carry the same momentum dependence of
each of the pi’s . The expansion of X is chosen to be symmetric respect to the pi. In this way one has
only to consider the tensors

p↵1
2 , p�1

2 , p↵2
3 , p�2

3 , p↵3
1 , p�3

1 , �↵2↵3 , �↵1↵2 , �↵1↵3 , . . . (5.11)
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transverse traceless sector



the intermediate steps are rather technical (ee BMS, "Implications of conformal symmetry in momentum space") 

The procedure presented above permits us to obtain a simple second-order differential equations
and are applied in the same way for all C1j , j = 1, 2, 3.

The primary CWIs are obtained, as previously discussed, when the coefficients C1j and C2j are
equal to zero. For instance, for the A1 form factor we obtain

K31 A1 = 0, K23A1 = 0. (5.40)

Note that, from the definition (5.38), we have

Kii = 0, Kji = �Kij , Kij + Kjk = Kik (5.41)

for any i, j, k = 1, 2, 3. One can therefore subtract corresponding pairs of equations and obtain the
following system of independent partial differential equations

K13 A1 = 0, K12A1 = 0. (5.42)

Since in the hTTT i �1 = �2 = �3 = d, using the manipulations discussed above one obtains all the
primary CWIs for the form factors Ai in the form

K13A1 = 0

K13A2 = 8A1

K13A2(p1 $ p3) = �8A1

K13A2(p2 $ p3) = 0

K13A3 = 2A2

K13A3(p1 $ p3) = �2A2(p1 $ p3)

K13A3(p2 $ p3) = 0

K13A4 = �4A2(p2 $ p3)

K13A4(p1 $ p3) = 4A2(p2 $ p3)

K13A4(p2 $ p3) = 4A2(p1 $ p3) � 4A2

K13A5 = 2 [A4 � A4(p1 $ p3)]

K23A1 = 0

K23A2 = 8A1

K23A2(p1 $ p3) = 0

K23A2(p2 $ p3) = �8A1

K23A3 = 2A2

K23A3(p1 $ p3) = 0

K23A3(p2 $ p3) = �2A2(p2 $ p3)

K23A4 = �4A2(p1 $ p3)

K23A4(p1 $ p3) = 4A2(p2 $ p3) � 4A2

K23A4(p2 $ p3) = 4A2(p1 $ p3)

K23A5 = 2 [A4 � A4(p2 $ p3)]

(5.43)

As already mentioned above, the solutions of these equations can be obtained by mapping them into
an hypergeometric system of equations for the Appell function F4. As shown in [20] each equation
is equivalent to a system of two coupled equations with specific indices that we have shown in [7] to
be universal. Differently from the case considered in [20] here the system of equations is far more
complicated and it has been discussed in [19] in terms of 3K integrals, which are integrals of 3 Bessel
functions. As we are going to see, the goal of the next section is to show how it is possible to use a
direct method based on the operatorial splitting of the hypergeometric differential operators in order
to relate inhomogeneous solutions to the homogeneous ones. This is obtained by re-expressing the
operators Kij in terms of other operators K̄ij , which characterize some homogeneous equations, plus
extra operators which are first order in the derivative respect to to the momenta. The action of the
extra operators on each F4 can be rearranged by suitable shifts of the parameters in F4 and using the
few known properties of this Appell function. The method follows the simpler case discussed in [7],
that we extend. We illustrate the approach, leaving to Appendix B the more technical details. One
of the difficulties of the system of equations (5.43) is the presence of exchanged momenta on their
right hand side which couple all the constants appearing in the solution in a nontrivial way. The
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primary WI's

and  secondary WI's which connect 3- and 2-point functions

The primary can be solved in temrs of 3K integrals and define a generalised hypergeometric system 
of Appell type for F4.



The generality of the BMS soluton, needs to be investigated from free field theory 
in order to explore whether the structure of the anomalous correlator is the one predicted from free field theory 
The free field theory approach is exactly equivalent to the general solutions since at d=4. TTT has 3 constants of 
Integration and there are 3 free field theories available for its representations. 

Notice that the scaling dimension of T is fixed, equal to d. 
THings would be different for arbitrary scalar operators 

Drastic simplifications of the 3K Bessel functions integrals, in terms of standard perturbative master integrals 

Maglio, CC,  Phys. Reports 2022 

Phys.Lett.B 781 (2018) Maglio, CC

Renormalization, Conformal Ward Identities and the Origin of a 
Conformal Anomaly Pole

Eur.Phys.J.C 80 (2020) 6, 540
• e-Print: 1912.01907

4 point functions 

Maglio, Theofilopoulos, CC

https://inspirehep.net/literature/1653161
https://inspirehep.net/literature/1653161
https://arxiv.org/abs/1912.01907


The TJJ pole? 

Also in this case the 
free feld theory can be 
Compared with the 
general BMS one

F1 has a pole coming from the 
trace WI,  while F2 does not  

Anomalies and renormalization are connected. 
The result is a true nonlocal interaction 



Maglio, Theofilopoulos, CC





MISSING TERMS IN THE NONLOCAL ANOMALY-INDUCED ACTION

MAGLIO, TOMMASI, CC

EPJC 2023



(Maglio, Theofilopoulos, CC, arXiv:2103.13957 , EPJ C)  The action describes the Conformal Backreaction 

Maglio, Theofilopoulos, CC

https://arxiv.org/abs/2103.13957


Dilaton explicit in the effective action 



RECENT Proposal 

Evading Lovelock's theorem by a renormalization of the coupling (Glavan and Lin; R. Mann et al) 

This action is quartic



Can we remove the dilaton?  

In DR  this is possible by a finite renormalization of the E counterterm 

•e-Print: 2201.07515 Maglio CC

Several papers,  R. Mann et al, Glavan and Lin PRL 

https://arxiv.org/abs/2201.07515


Maglio, CC, Theofilopoulos, 



Conclusions

The breaking of conformal symmetry is associated to the the propagation of massless effective states 
in the effective action. 

For chiral anomalies, the interactions can be reconstructed by a combination of the 
Anomaly pole + CWIs. We have shown it in the case of the AVV, for the J5TT (work in preparation)

For parity breaking trace/conformal anomalies, we have also shown that 
the reconstruction can also be based entirely on the selection of an anomaly pole to solve the CWIs. 

We have used the TTJJ correlator to show that the anomaly induced actions either in the Riegert form or in the 
Fradkin-Vilkovisky form miss crucial Weyl invariant terms in order to be consistent with the CWIs 
and identified such terms 

Applicatons
Condensed Matter theory: application of this class of nonlocal actions in the context of topological
Materials (via Luttinger formula)
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