CFT in Momentum Space, Anomalies, and the Nonlocal Conformal Anomaly Action

Claudio Coriano`
Dipartimento di Matematica e Fisica
Universita` del Salento and INFN, Lecce, Italy

Based on recent works with
S. Lionetti, R. Tommasi, M. Creti', M. Maglio,

Abstract
Momentum space methods in CFT allow to describe quite efficiently the correlators containing insertions of stress energy tensor (T) and/or axial vector currents, and affected by conformal and chiral anomalies. (TTT, TTJ5, J5JJ,TTTT)

Analysis have been performed up to 4-point functions (4T).
The hierarchy of the conformal Ward identities (CWIs) constraining such correlation functions have been investigated using both free field theory realizations and, nonperturbatively, using their CWIs

By this approach it has also been shown the inconsistency of anomaly induced actions in the Riegert and in the Fradkin-Vilkovisky beyond 3-point functions. Corrections identified for a specific correlator (TTJJ)

We will overview the methodology and the main results in this area, and the central role played by anomaly poles in determining the structure of these interactions.

Yangian Symmetry in momentum space (Maglio, CC)
-JHEP 09 (2019) 107 e-Print: 1903.05047
On Some Hypergeometric Solutions of the Conformal Ward Identities of Scalar 4-point Functions in Momentum Space

$$
\mathcal{S}_{2}=\int d^{d} x\left(\left(R_{\mu \nu \rho \sigma}\right)^{2}+a\left(R_{\mu \nu}\right)^{2}+b R^{2}\right),
$$

QUADRATIC CORRECTIONS TO GRAVITY ASSOCIATED WITH THE TRACE ANOMALY

$$
\mathcal{S}_{2}^{(2)}=\frac{1}{4} \int d^{d} x \sqrt{g}\left((a+4) h^{\mu \nu} \square^{2} h_{\mu \nu}+(b-1) h \square^{2} h\right),
$$

$$
E_{n}=\frac{1}{2^{d / 2}} \delta_{\mu_{1} \mu_{2} \ldots \mu_{d}}^{\nu_{1} \nu_{2} \ldots . \nu_{d}} R_{\nu_{1} \nu_{2}}^{\mu_{1} \mu_{2}} R_{\nu_{3} \nu_{4}}^{\mu_{3} \mu_{4}} \ldots R_{\nu_{d-1} \nu_{d}}^{\mu_{d-1} \mu_{d}},
$$

$$
S=\int d^{d} x \sqrt{g} \sum_{n=0}^{[d / 2]} \alpha_{2 n} E_{2 n}
$$

0/0 LIMIT

$$
\mathcal{S}_{E G B}=\mathcal{S}_{E H}+\mathcal{S}_{G B}(d) \quad \mathcal{S}_{G B}(d)=\frac{\alpha}{\epsilon} V_{E}(d) \quad, \quad \begin{aligned}
& E_{0}=1, \\
& E_{2}=R, \\
& E_{4}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-4 R^{\mu \nu} R_{\mu \nu}+R^{2},
\end{aligned}
$$

TOPOLOGICAL TERMS CAN BE RENDERED DYNAMICS AT $D=4, D=6$, VIA A O/O PROCEDURE.

He result is a form od dilaton gravity, that can be rendered nonlocal by removing the dilaton.

$$
g_{\mu \nu}=e^{2 \phi(x)} \bar{g}_{\mu \nu}
$$

$$
\begin{aligned}
\sqrt{g} E= & \sqrt{\bar{g}} e^{(d-4) \phi}\left\{\bar{E}+(d-3) \bar{\nabla}_{\mu} \bar{J}^{\mu}(\bar{g}, \phi)+(d-3)(d-4) \bar{K}(\bar{g}, \phi)\right\} \\
\bar{K}(\bar{g}, \phi)= & 4 \bar{R}^{\mu \nu} \bar{\nabla}_{\mu} \phi \bar{\nabla}_{\nu} \phi-2 \bar{R} \bar{\nabla}_{\lambda} \phi \bar{\nabla}^{\lambda} \phi+4(d-2) \square \phi \bar{\nabla}_{\lambda} \phi \bar{\nabla}^{\lambda} \phi+(d-1)(d-2)\left(\bar{\nabla}_{\lambda} \phi \bar{\nabla}^{\lambda} \phi\right)^{2} \\
& \quad \\
\hat{V}_{E}^{\prime}(g, \phi) \quad & \equiv \lim _{\epsilon \rightarrow 0}\left(\frac{1}{\epsilon}\left(V_{E}(g, d)-V_{E}(\bar{g}, d)\right)\right) \\
& =\int d^{4} x \sqrt{g}\left[\phi_{4} E-\left(4 G^{\mu \nu}\left(\bar{\nabla}_{\mu} \phi \bar{\nabla}_{\nu} \phi\right)+2\left(\nabla_{\lambda} \phi \nabla^{\lambda} \phi\right)^{2}+4 \square \phi \nabla_{\lambda} \phi \nabla^{\lambda} \phi\right)\right]
\end{aligned}
$$

Few phenomenological facts about anomalies

Anomalies are quantum violation of classical conservation laws.

For instance, for chiral anomalies, they are related to the presence of chiral interactions that need to be canceled in the case of chiral gauge theories such as the Standard Model, but they are perfectly fine for currents associated with global symmetries.

A candidate for dark matter, the axion, comes from the spontaneous breaking of a global $\mathrm{U}(1)(\mathrm{PQ})$ symmetry at a large scale, with a physical Nambu Goldstone mode, whose potential is slightly tilted (a vacuum misalignment) at the QCD confinement phase transition scale, through instanton effects.

Anomalies can be characterised both by topological and non-topological contributions.
For example, a chiral anomaly is topological (Pontryagin density) a conformal anomaly is related both to topological (Euler Poincare' density) and to non topological terms (Weyl tensor squared)

The most important dynamical character of the anomaly, from the point of view of an anomaly amplitude, appears in momentum space and is associated with anomaly poles.
Anomaly cancelation can be interpreted as cancelation of anomaly poles of a certain interaction.
The interaction mediated by the anomaly pole is, obviously, nonlocal in cooordinate space

$$
\begin{array}{lll}
J_{5}^{\lambda}=\bar{\psi} \gamma^{\lambda} \gamma_{5} \psi & J^{\mu}=\bar{\psi} \gamma^{\mu} \psi & \begin{array}{l}
\text { Axial-vector and Vector currents } \\
\text { Conserved at classical level }
\end{array} \\
\partial_{\lambda} J_{5}^{\lambda}=0 & \partial_{\mu} J^{\mu}=0 & \partial_{\lambda}\left\langle J_{5}^{\lambda}\right\rangle \neq 0
\end{array}
$$

At quantum level these conservation equations are violated.
A certain gauge global or local symmetry is violated at quantum level in the presence of chiral fermions.

Various methods of computations of such anomalies. Quantum averages are computed in the presence of background fields (gravitational and/or external gauge fields)

CHIRAL ANOMALY

$$
\partial_{\lambda}\left\langle J_{5}^{\lambda}\right\rangle=a_{n} F \tilde{F}
$$

Similar situation for other symmetries. Diffeomorphism invariance of a certain classical action requires that the stress energy tensor is covariantly conserved.

$$
\begin{gathered}
T^{\mu \nu} \equiv \frac{2}{\sqrt{g}} \frac{\delta S}{\delta g_{\mu \nu}} \\
\nabla_{\mu} T^{\mu \nu}=0
\end{gathered}
$$

$$
g_{\mu \nu} T^{\mu \nu}=0 . \quad g_{\mu \nu}\left\langle T^{\mu \nu}\right\rangle \neq 0
$$

There can be a Trace anomaly

$$
g_{\mu \nu}\left\langle T^{\mu \nu}\right\rangle=\beta(g) F F
$$

This is a requirement that should be respected all the time.
But if the action has a conformal symmetry,
There can be a Trace anomaly $\quad g_{\mu \nu}\left\langle T^{\mu \nu}\right\rangle=\beta(g) F F$ then its trace should vanish at classical level.

In the presence of a classical external gravitational field, the anomaly functionals include other contributions

$$
\nabla_{\mu}\left\langle J_{5}^{\mu}\right\rangle=a_{1} \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}+a_{2} \varepsilon^{\mu \nu \rho \sigma} R_{\mu \nu}^{\alpha \beta} R_{\alpha \beta \rho \sigma} . \quad C^{\mu \nu \rho \sigma} C_{\mu \nu \rho \sigma}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-2 R^{\mu \nu} R_{\mu \nu}+\frac{1}{3} R^{2}, ~ E_{4} \equiv E=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}-4 R^{\mu \nu} R_{\mu \nu}+R^{2} .
$$

$$
g_{\mu \nu}\left\langle T^{\mu \nu}\right\rangle=b_{1} E_{4}+b_{2} C^{\mu \nu \rho \sigma} C_{\mu \nu \rho \sigma}+b_{3} \nabla^{2} R+b_{4} F^{\mu \nu} F_{\mu \nu}
$$

Euler Poincare' and Weyl Tensor

These constraints generate, by a functional expansion of the quantum averages wrt the external fileds, An infinite set of anomalous Ward identities which are hierarchical.

In the case of a trace anomaly, when the classical conformal symmetry of the action is violated at quantum level, we derive an infinite set of conformal Ward identities (CWIs) that constrain these correlators.

Notice that the one can formulated the breaking of conformal symmetry as a violation of Weyl invariance of a certain action. In each free falling frame, one reobtains, one recovers the ordinary conformal WIs of flat space

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi+\frac{1}{4} \widetilde{g} \varphi F_{\mu \nu} \widetilde{F}^{\mu \nu},
$$

$$
\square \varphi-\frac{\widetilde{g}}{4} F^{\mu \nu} \widetilde{F}_{\mu \nu}=0 .
$$

Modified Maxwell's equations
$\square \varphi=-\widetilde{g} \boldsymbol{E} \cdot \boldsymbol{B}$.

$$
\boldsymbol{B}=0,
$$

$\square\left(\boldsymbol{E}-\frac{1}{2} \widetilde{g} \varphi \boldsymbol{B}\right)=-\frac{1}{2} \widetilde{g} \varphi \square \boldsymbol{B}$,
$\square\left(\boldsymbol{B}+\frac{1}{2} \widetilde{g} \varphi \boldsymbol{E}\right)=\frac{1}{2} \widetilde{g} \varphi \square \boldsymbol{E}$.

$$
\left\{\begin{array}{l}
\frac{\partial \boldsymbol{B}}{\partial t}+\nabla \times \boldsymbol{E}=0, \\
\square \varphi=-\widetilde{g} \boldsymbol{E} \cdot \boldsymbol{B}, \\
\nabla \cdot \boldsymbol{E}=\widetilde{g} \nabla \varphi \cdot \boldsymbol{B}, \\
\nabla \times \boldsymbol{B}-\frac{\partial \boldsymbol{E}}{\partial t}=-\widetilde{g} \boldsymbol{B} \frac{\partial \varphi}{\partial t}+\widetilde{g} \boldsymbol{E} \times \nabla \varphi .
\end{array}\right.
$$

Similar effects are possible in gravity (Faraday rotations on GWs). (Creti, Tommasi, CC). gravitomagnetism

$$
\begin{array}{lr}
\square\left(\boldsymbol{E}-\frac{1}{2} \widetilde{g} \varphi \boldsymbol{B}\right)=-\frac{1}{2} \widetilde{g} \varphi \square \boldsymbol{B}, & \boldsymbol{D} \equiv \boldsymbol{E}-\frac{1}{2} \widetilde{g} \varphi \boldsymbol{B} \\
\square\left(\boldsymbol{B}+\frac{1}{2} \widetilde{g} \varphi \boldsymbol{E}\right)=\frac{1}{2} \widetilde{g} \varphi \square \boldsymbol{E} . & \boldsymbol{H} \equiv \boldsymbol{B}+\frac{1}{2} \widetilde{g} \varphi \boldsymbol{E} . \\
& \theta=\frac{1}{2} \widetilde{g} \Delta \varphi,
\end{array}
$$

Rotation of the polarization plane

$$
\Delta \boldsymbol{E} \equiv \boldsymbol{E}(L)-\boldsymbol{E}(0)=\frac{1}{2} \widetilde{g} \Delta \varphi \boldsymbol{H}(0) . \quad \Delta \varphi \equiv \varphi(L)-\varphi(0) .
$$

$g_{\mu \nu}\left\langle T^{\mu \nu}\right\rangle=\mathcal{A}=b_{1} E_{4}+b_{2} C^{\mu \nu \rho \sigma} C_{\mu \nu \rho \sigma}+b_{3} \nabla^{2} R+b_{4} F^{\mu \nu} F_{\mu \nu}+f_{1} \varepsilon^{\mu \nu \rho \sigma} R_{\alpha \beta \mu \nu} R_{\rho \sigma}^{\alpha \beta}+f_{2} \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}$,

Parity even and parity odd terms in the trace anomaly conjectures since the 70's (Deser Isham Duff)
Source of parity violation generate an issue with unitarity in free field theory realizations (e.g. the Standard Model) due to the fact that the anomaly coefficients are imaginary.

Several subtle issues where identified since the 80 's (M. Duff, P. van Nieuwenhuizen) concerning topological contributions to the anomaly in free field theories.

Equivalent field redefinitions at classical level generate different anomalies.
Important issues that need to be explored in the context of free CFT realizations in different dimensions.

$$
\begin{aligned}
& g_{\mu \nu}\left\langle T^{\mu \nu}\right\rangle=\left(f_{1} \varepsilon^{\mu \nu \rho \sigma} R_{\alpha \beta \mu \nu} R_{\rho \sigma}^{\alpha \beta}+f_{2} \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}, \quad\right. \text { Early universe } \\
& F \tilde{F}=k E \cdot B \quad \text { E and } \mathrm{B} \text { even under } \mathrm{C} \text {, but } \mathrm{E} \text { odd and } \mathrm{B} \text { even under } \mathrm{P}>\mathrm{CP} \text { violation }
\end{aligned}
$$

The Standard Model, even with complex phases in the CKM matrix, is unable to generate significant sources of CP violation.

However, the perturbative realizations of correlators such as T 5 JJ , seem to indicate that they are zero In free field theory (Armillis, Delle Rose, CC) , (Bastianelli, Chiese), (Abdallah, Franchino-Vinas, Frob)

Issues with unitarity due to complex f's : They are non zero (L. Bonora et Al)
CWIs seem to indicate that they can be nonzero (Lionetti, maglio, CC) (more later) It is not clear whether such CFT's, even for real f's are consistent.

QUESTION:
 What happens when conformal symmetry is broken by an anomaly ?
 Momentum space techniques are the most effcient way to investigate correlation functions affected by an anomaly.
 We will show that chiral and anomaly interactions can be completely determined by CFT + anomaly poles

Four-point functions of gravitons and conserved currents of CFT in momentum space: testing the nonlocal action with the TTJJ
-Eur.Phys.J.C 83 (2023) 5, 427 e-Print: 2212.12779
(Maglio, Tommasi, CC)
Topological corrections and conformal backreaction in the Einstein Gauss-Bonnet/Weyl theories of gravity at $D=4$
-Eur.Phys.J.C 82 (2022) 12, 1121 e-Print: 2203.04213
(Maglio, Theofilopoulos,CC)
Einstein Gauss-Bonnet theories as ordinary, Wess-Zumino conformal anomaly actions
-Phys.Lett.B 828 (2022) 137020 e-Print: 2201.07515 (Maglio, CC)

Conformal field theory in momentum space and anomaly actions in gravity: The analysis of three- and four-point function

- Phys.Rept. 952 (2022) e-Print: 2005.06873 (Maglio, CC)

The conformal anomaly action to fourth order (4T) in $d=4$ in momentum space -Eur.Phys.J.C 81 (2021) 8, 740 e-Print: 2103.13957 (Maglio, Theofilopoulos, CC)

CFT Correlators and CP-Violating Trace Anomalies 2307.03038 [hep-th]

 (Lionetti, Maglio, CC)Parity-odd 3-point functions from CFT in momentum space and the chiral anomaly, Lionetti, Maglio, CC) -Eur.Phys.J.C 83 (2023) 6, 502 e-Print: 2303.10710

Work in preparation with M. Creti, R. Tommasi, D. Melle (4T)

$$
\Delta_{\mathbf{A V V}}^{\lambda \mu \nu}=\Delta^{\lambda \mu \nu}=i^{3} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\operatorname{Tr}\left[\gamma^{\mu}(d+m) \gamma^{\lambda} \gamma^{5}(d-\not q+m) \gamma^{\nu}\left(\phi-\not \phi_{1}+m\right)\right]}{\left(q^{2}-m^{2}\right)\left[\left(q-k_{1}\right)^{2}-m^{2}\right]\left[(q-k)^{2}-m^{2}\right]}+\text { exch. }
$$

$$
\Delta_{\mathrm{AAA}}^{\lambda \mu \nu}=\Delta_{3}^{\lambda \mu \nu}=i^{3} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\operatorname{Tr}\left[\gamma^{\mu} \gamma^{5}(d+m) \gamma^{\lambda} \gamma^{5}(\underline{q}-\not \nmid+m) \gamma^{\nu} \gamma^{5}\left(\underline{q}-\not \nmid_{1}+m\right)\right]}{\left(q^{2}-m^{2}\right)\left[\left(q-k_{1}\right)^{2}-m^{2}\right]\left[(q-k)^{2}-m^{2}\right]}+\text { exch. }
$$

$$
k_{1 \mu} \Delta^{\lambda \mu \nu}\left(k_{1}, k_{2}\right)=a_{1} \epsilon^{\lambda \nu \alpha \beta} k_{1}^{\alpha} k_{2}^{\beta}
$$

$$
k_{2 \nu} \Delta^{\lambda \mu \nu}\left(k_{1}, k_{2}\right)=a_{2} \epsilon^{\lambda \mu \alpha \beta} k_{2}^{\alpha} k_{1}^{\beta}
$$

$$
a_{1}=-\frac{i}{8 \pi^{2}} \quad a_{2}=-\frac{i}{8 \pi^{2}} \quad a_{3}=-\frac{i}{4 \pi^{2}}
$$

$$
k_{\lambda} \Delta^{\lambda \mu \nu}\left(k_{1}, k_{2}\right)=a_{3} \epsilon^{\mu \nu \alpha \beta} k_{1}^{\alpha} k_{2}^{\beta},
$$

$$
\left(a=\alpha\left(k_{1}+k_{2}\right)+\beta\left(k_{1}-k_{2}\right)\right)
$$

$$
\Delta^{\lambda \mu \nu}\left(\beta, k_{1}, k_{2}\right)=\Delta^{\lambda \mu \nu}\left(k_{1}, k_{2}\right)-\frac{i}{4 \pi^{2}} \beta \epsilon^{\lambda \mu \nu \sigma}\left(k_{1 \sigma}-k_{2 \sigma}\right) .
$$

$$
k_{1 \mu} \Delta^{\lambda \mu \nu}\left(a, k_{1}, k_{2}\right)=0
$$

$$
k_{2 \nu} \Delta^{\lambda \mu \nu}\left(a, k_{1}, k_{2}\right)=0,
$$

$$
k_{\lambda} \Delta^{\lambda \mu \nu}\left(a, k_{1}, k_{2}\right)=-\frac{i}{2 \pi^{2}} \varepsilon^{\mu \nu \alpha \beta} k_{1}^{\alpha} k_{2}^{\beta}
$$

The external Wis determine the diagram. No need for Renormalization.

Signatures of Chiral and Conformal anomalies

AVV diagram

$$
\begin{aligned}
\Delta_{0}^{\lambda \mu \nu} & =A_{1}\left(k_{1}, k_{2}\right) \varepsilon\left[k_{1}, \mu, \nu, \lambda\right]+A_{2}\left(k_{1}, k_{2}\right) \varepsilon\left[k_{2}, \mu, \nu, \lambda\right]+A_{3}\left(k_{1}, k_{2}\right) \varepsilon\left[k_{1}, k_{2}, \mu, \lambda\right] k_{1}^{\nu} \\
& +A_{4}\left(k_{1}, k_{2}\right) \varepsilon\left[k_{1}, k_{2}, \mu, \lambda\right] k_{2}^{\nu}+A_{5}\left(k_{1}, k_{2}\right) \varepsilon\left[k_{1}, k_{2}, \nu, \lambda\right] k_{1}^{\mu}+A_{6}\left(k_{1}, k_{2}\right) \varepsilon\left[k_{1}, k_{2}, \nu, \lambda\right] k_{2}^{\mu} .
\end{aligned}
$$

If we change the parameterization of the loop momentum, A 1 and A 2 change.

$$
\begin{aligned}
& A_{3}\left(k_{1}, k_{2}\right)=-A_{6}\left(k_{2}, k_{1}\right)=-16 \pi^{2} I_{11}\left(k_{1}, k_{2}\right), \\
& A_{4}\left(k_{1}, k_{2}\right)=-A_{5}\left(k_{2}, k_{1}\right)=16 \pi^{2}\left[I_{20}\left(k_{1}, k_{2}\right)-I_{10}\left(k_{1}, k_{2}\right)\right],
\end{aligned}
$$

Some are finite by power counting.
A1 and A2 are not
where the general massive $I_{s t}$ integral is defined by

$$
I_{s t}\left(k_{1}, k_{2}\right)=\int_{0}^{1} d w \int_{0}^{1-w} d z w^{s} z^{t}\left[z(1-z) k_{1}^{2}+w(1-w) k_{2}^{2}+2 w z\left(k_{1} k_{2}\right)-m^{2}\right]^{-1}
$$

Impose vector Ward identities

$$
\begin{aligned}
& A_{1}\left(k_{1}, k_{2}\right)=k_{1} \cdot k_{2} A_{3}\left(k_{1}, k_{2}\right)+k_{2}^{2} A_{4}\left(k_{1}, k_{2}\right) \\
& A_{2}\left(k_{1}, k_{2}\right)=k_{1}^{2} A_{5}\left(k_{1}, k_{2}\right)+k_{1} \cdot k_{2} A_{6}\left(k_{1}, k_{2}\right)
\end{aligned}
$$

Then A1 ans A2 are fixed without any renormalization

No renormalization: Chiral anomalies are topological, similarly to the Euler density in the conformal anomaly
$\frac{\partial}{\partial x^{\mu}} T_{\mathrm{AVV}}^{\lambda \mu \nu}(x, y, z)=i a_{1}(\beta) \epsilon^{\lambda \nu \alpha \beta} \frac{\partial}{\partial x^{\alpha}} \frac{\partial}{\partial y^{\beta}}\left(\delta^{4}(x-z) \delta^{4}(y-z)\right)$,
$\frac{\partial}{\partial y^{\nu}} T_{\mathrm{AVV}}^{\lambda \mu \nu}(x, y, z)=i a_{2}(\beta) \epsilon^{\lambda \mu \alpha \beta} \frac{\partial}{\partial y^{\alpha}} \frac{\partial}{\partial x^{\beta}}\left(\delta^{4}(x-z) \delta^{4}(y-z)\right)$,
$\frac{\partial}{\partial z^{\lambda}} T_{\mathbf{A V V}}^{\lambda \mu \nu}(x, y, z)=i a_{3}(\beta) \epsilon^{\mu \nu \alpha \beta} \frac{\partial}{\partial x^{\alpha}} \frac{\partial}{\partial y^{\beta}}\left(\delta^{4}(x-z) \delta^{4}(y-z)\right)$,

$$
\begin{aligned}
& A_{1}\left(s, s_{1}, s_{2}\right)=-\frac{i}{4 \pi^{2}}+\frac{i}{8 \pi^{2} \sigma}\{ \Phi\left(s_{1}, s_{2}\right) \frac{s_{1} s_{2}\left(s_{2}-s_{1}\right)}{s}+s_{1}\left(s_{2}-s_{12}\right) \log \left[\frac{s_{1}}{s}\right] \\
&\left.-s_{2}\left(s_{1}-s_{12}\right) \log \left[\frac{s_{2}}{s}\right]\right\}, \\
& \cdot \\
& \Phi(x, y)= \frac{1}{\lambda}\left\{2\left[L i_{2}(-\rho x)+L i_{2}(-\rho y)\right]+\ln \frac{y}{x} \ln \frac{1+\rho y}{1+\rho x}+\ln (\rho x) \ln (\rho y)+\frac{\pi^{2}}{3}\right\}, \quad \text { Davydychev }
\end{aligned}
$$

$$
\begin{array}{rlr}
\lambda(x, y)=\sqrt{\Delta}, & \Delta=(1-x-y)^{2}-4 x y, \\
\rho(x, y)=2(1-x-y+\lambda)^{-1}, & x=\frac{s_{1}}{s}, & y=\frac{s_{2}}{s} .
\end{array}
$$

This is not the only parameterization. A second one is the longitudinal/transverse (LT) decomposition

$$
\begin{aligned}
W^{\lambda \mu \nu} & =\frac{1}{8 \pi^{2}}\left[W^{L \lambda \mu \nu}-W^{T \lambda \mu \nu}\right] \\
W^{L \lambda \mu \nu} & =w_{L} k^{\lambda} \varepsilon\left[\mu, \nu, k_{1}, k_{2}\right]
\end{aligned}
$$

De Rafael et al
developed in the study of g-2 of the muon It corrects an erro r in the book by Kerson Huang on particle theory

Only the L part contributes to the Ward Identity

$$
\begin{aligned}
W_{\lambda \mu \nu}^{T}\left(k_{1}, k_{2}\right)= & w_{T}^{(+)}\left(k^{2}, k_{1}^{2}, k_{2}^{2}\right) t_{\lambda \mu \nu}^{(+)}\left(k_{1}, k_{2}\right)+w_{T}^{(-)}\left(k^{2}, k_{1}^{2}, k_{2}^{2}\right) t_{\lambda \mu \nu}^{(-)}\left(k_{1}, k_{2}\right) \\
& +\widetilde{w}_{T}^{(-)}\left(k^{2}, k_{1}^{2}, k_{2}^{2}\right) \widetilde{t}_{\lambda \mu \nu}^{(-)}\left(k_{1}, k_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
t_{\lambda \mu \nu}^{(+)}\left(k_{1}, k_{2}\right)=k_{1 \nu} \varepsilon\left[\mu, \lambda, k_{1}, k_{2}\right]-k_{2 \mu} \varepsilon\left[\nu, \lambda, k_{1}, k_{2}\right]-\left(k_{1} \cdot k_{2}\right) \varepsilon\left[\mu, \nu, \lambda,\left(k_{1}-k_{2}\right)\right] \\
\\
+\frac{k_{1}^{2}+k_{2}^{2}-k^{2}}{k^{2}} k_{\lambda} \varepsilon\left[\mu, \nu, k_{1}, k_{2}\right]
\end{gathered}
$$

Tensor structures involved In the LT parameterization

$$
t_{\lambda \mu \nu}^{(-)}\left(k_{1}, k_{2}\right)=\left[\left(k_{1}-k_{2}\right)_{\lambda}-\frac{k_{1}^{2}-k_{2}^{2}}{k^{2}} k_{\lambda}\right] \varepsilon\left[\mu, \nu, k_{1}, k_{2}\right]
$$

$$
\tilde{t}_{\lambda \mu \nu}^{(-)}\left(k_{1}, k_{2}\right)=k_{1 \nu} \varepsilon\left[\mu, \lambda, k_{1}, k_{2}\right]+k_{2 \mu} \varepsilon\left[\nu, \lambda, k_{1}, k_{2}\right]-\left(k_{1} \cdot k_{2}\right) \varepsilon[\mu, \nu, \lambda, k] .
$$

$$
\begin{aligned}
A_{3}\left(k_{1}, k_{2}\right) & =\frac{1}{8 \pi^{2}}\left[w_{L}-\tilde{w}_{T}^{(-)}-\frac{k^{2}}{\left(k_{1}+k_{2}\right)^{2}} w_{T}^{(+)}-2 \frac{k_{1} \cdot k_{2}-k_{2}^{2}}{k^{2}} w_{T}^{(-)}\right] \\
A_{4}\left(k_{1}, k_{2}\right) & =\frac{1}{8 \pi^{2}}\left[w_{L}+2 \frac{k_{1} \cdot k_{2}}{k^{2}} w_{T}^{(+)}-2 \frac{k_{1} \cdot k_{2}+k_{2}^{2}}{k^{2}} w_{T}^{(-)}\right] \\
A_{5}\left(k_{1}, k_{2}\right) & =-A_{4}\left(k_{2}, k_{1}\right), \quad A_{6}\left(k_{1}, k_{2}\right)=-A_{3}\left(k_{2}, k_{1}\right)
\end{aligned}
$$

$$
w_{L}\left(k^{2}, k_{1}^{2}, k_{2}^{2}\right)=\frac{8 \pi^{2}}{k^{2}}\left[A_{1}-A_{2}\right]
$$

$$
\begin{aligned}
w_{L}\left(k^{2}, k_{1}^{2}, k_{2}^{2}\right) & =\frac{8 \pi^{2}}{k^{2}}\left[\left(A_{3}-A_{6}\right) k_{1} \cdot k_{2}+A_{4} k_{2}^{2}-A_{5} k_{1}^{2}\right], \\
w_{T}^{(+)}\left(k^{2}, k_{1}^{2}, k_{2}^{2}\right) & =-4 \pi^{2}\left(A_{3}-A_{4}+A_{5}-A_{6}\right), \\
w_{T}^{(-)}\left(k^{2}, k_{1}^{2}, k_{2}^{2}\right) & =4 \pi^{2}\left(A_{4}+A_{5}\right), \\
\tilde{w}_{T}^{(-)}\left(k^{2}, k_{1}^{2}, k_{2}^{2}\right) & =-4 \pi^{2}\left(A_{3}+A_{4}+A_{5}+A_{6}\right),
\end{aligned}
$$

The momentum in the loop, A1 and A2 will shift by the same amount, but WL will not change.

Notice the presence of a single pole in the Longitudinal component of the AVV diagram.

$$
\begin{aligned}
w_{L}\left(s_{1}, s_{2}, s\right) & =-\frac{4 i}{s} \\
w_{T}^{(+)}\left(s_{1}, s_{2}, s\right) & =i \frac{s}{\sigma}+\frac{i}{2 \sigma^{2}}\left[\left(s_{12}+s_{2}\right)\left(3 s_{1}^{2}+s_{1}\left(6 s_{12}+s_{2}\right)+2 s_{12}^{2}\right) \log \frac{s_{1}}{s}\right. \\
& +\left(s_{12}+s_{1}\right)\left(3 s_{2}^{2}+s_{2}\left(6 s_{12}+s_{1}\right)+2 s_{12}^{2}\right) \log \frac{s_{2}}{s} \\
& \text { s(2s, } \left.\left.s_{12}\left(s_{1}+s_{2}\right)+s_{1} s_{2}\left(s_{1}+s_{2}+6 s_{12}\right)\right) \Phi\left(s_{1}, s_{2}\right)\right]
\end{aligned}
$$

The triangle diagram in the fermion case (a), the collinear fermion configuration responsible for the anomaly (b) and a diagrammatic representation of the exchange via an intermediate state (dashed line) (c).

The signature of the chiral anomaly is in the the generation of 1 pole in the axial vector channel

We consider the standard QED lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \gamma^{\mu}\left(\partial_{\mu}-i e A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

$$
\begin{gathered}
T_{f}^{\mu \nu}=-i \bar{\psi} \gamma^{(\mu \stackrel{\leftrightarrow}{\partial} \nu)} \psi+g^{\mu \nu}\left(i \bar{\psi} \gamma^{\lambda} \stackrel{\leftrightarrow}{\partial}_{\lambda} \psi-m \bar{\psi} \psi\right) \\
T_{f p}^{\mu \nu}=-e J^{(\mu} A^{\nu)}+e g^{\mu \nu} J^{\lambda} A_{\lambda} \\
T_{p h}^{\mu \nu}=F^{\mu \lambda} F_{\lambda}^{\nu}-\frac{1}{4} g^{\mu \nu} F^{\lambda \rho} F_{\lambda \rho}
\end{gathered}
$$

(a)

(b)

$$
T^{\mu \nu} \equiv T_{f}^{\mu \nu}+T_{f p}^{\mu \nu}+T_{p h}^{\mu \nu}
$$

(c)

$$
\begin{aligned}
\left\langle T_{p}^{\mu \nu}(z)\right\rangle_{A} & \equiv \int D \psi D \bar{\psi} T_{p}^{\mu \nu}(z) e^{i \int d^{4} x \mathcal{L}+\int J \cdot A(x) d^{4} x} \\
& =\left\langle T_{p}^{\mu \nu} e^{i \int d^{4} x J \cdot A(x)}\right\rangle
\end{aligned}
$$

i	$t_{i}^{\mu \nu \alpha \beta}(p, q)$
1	$\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right) u^{\alpha \beta}(p . q)$
2	$\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right) w^{\alpha \beta}(p . q)$
3	$\left(p^{2} g^{\mu \nu}-4 p^{\mu} p^{\nu}\right) u^{\alpha \beta}(p . q)$
4	$\left(p^{2} g^{\mu \nu}-4 p^{\mu} p^{\nu}\right) w^{\alpha \beta}(p . q)$
5	$\left(q^{2} g^{\mu \nu}-4 q^{\mu} q^{\nu}\right) u^{\alpha \beta}(p . q)$
6	$\left(q^{2} g^{\mu \nu}-4 q^{\mu} q^{\nu}\right) w^{\alpha \beta}(p . q)$
7	$\left[p \cdot q g^{\mu \nu}-2\left(q^{\mu} p^{\nu}+p^{\mu} q^{\nu}\right)\right] u^{\alpha \beta}(p . q)$
8	$\left[p \cdot q g^{\mu \nu}-2\left(q^{\mu} p^{\nu}+p^{\mu} q^{\nu}\right)\right] w^{\alpha \beta}(p \cdot q)$
9	$\left(p \cdot q p^{\alpha}-p^{2} q^{\alpha}\right)\left[p^{\beta}\left(q^{\mu} p^{\nu}+p^{\mu} q^{\nu}\right)-p \cdot q\left(g^{\beta \nu} p^{\mu}+g^{\beta \mu} p^{\nu}\right)\right]$
10	$\left(p \cdot q q^{\beta}-q^{2} p^{\beta}\right)\left[q^{\alpha}\left(q^{\mu} p^{\nu}+p^{\mu} q^{\nu}\right)-p \cdot q\left(g^{\alpha \nu} q^{\mu}+g^{\alpha \mu} q^{\nu}\right)\right]$
11	$\left(p \cdot q p^{\alpha}-p^{2} q^{\alpha}\right)\left[2 q^{\beta} q^{\mu} q^{\nu}-q^{2}\left(g^{\beta \nu} q^{\mu}+g^{\beta \mu} q^{\nu}\right)\right]$
12	$\left(p \cdot q q^{\beta}-q^{2} p^{\beta}\right)\left[2 p^{\alpha} p^{\mu} p^{\nu}-p^{2}\left(g^{\alpha \nu} p^{\mu}+g^{\alpha \mu} p^{\nu}\right)\right]$
13	$\left(p^{\mu} q^{\nu}+p^{\nu} q^{\mu}\right) g^{\alpha \beta}+p \cdot q\left(g^{\alpha \nu} g^{\beta \mu}+g^{\alpha \mu} g^{\beta \nu}\right)-g^{\mu \nu} u^{\alpha \beta}$
	$-\left(g^{\beta \nu} p^{\mu}+g^{\beta \mu} p^{\nu}\right) q^{\alpha}-\left(g^{\alpha \nu} q^{\mu}+g^{\alpha \mu} q^{\nu}\right) p^{\beta}$

$$
\underline{\underline{\mathbf{F}_{\mathbf{1}}\left(\mathbf{s} ; \mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}, \mathbf{0}\right)}}=-\frac{e^{2}}{18 \pi^{2} s},
$$

$$
\Gamma^{\mu \nu \alpha \beta}(p, q)=\sum_{i=1}^{13} F_{i}\left(s ; s_{1}, s_{2}, m^{2}\right) t_{i}^{\mu \nu \alpha \beta}(p, q)
$$

(a)

(b)

(c)

$$
\begin{array}{rlr}
R^{\mu} & =\bar{\lambda}^{a} \bar{\sigma}^{\mu} \lambda^{a}+\frac{1}{3}\left(-\bar{\chi}_{i} \bar{\sigma}^{\mu} \chi_{i}+2 i \phi_{i}^{\dagger} \mathcal{D}_{i j}^{\mu} \phi_{j}-2 i\left(\mathcal{D}_{i j}^{\mu} \phi_{j}\right)^{\dagger} \phi_{i}\right), \\
S_{A}^{\mu} & =i\left(\sigma^{\nu \rho} \sigma^{\mu} \bar{\lambda}^{a}\right)_{A} F_{\nu \rho}^{a}-\sqrt{2}\left(\sigma_{\nu} \bar{\sigma}^{\mu} \chi_{i}\right)_{A}\left(\mathcal{D}_{i j}^{\nu} \phi_{j}\right)^{\dagger}-i \sqrt{2}\left(\sigma^{\mu} \bar{\chi}_{i}\right) \mathcal{W}_{i}^{\dagger}\left(\phi^{\dagger}\right) \\
& -i g\left(\phi_{i}^{\dagger} T_{i j}^{a} \phi_{j}\right)\left(\sigma^{\mu} \bar{\lambda}^{a}\right)_{A}+S_{I A}^{\mu}, \\
T^{\mu \nu} & =-F^{a \mu \rho} F^{a \nu}{ }_{\rho}+\frac{i}{4}\left[\bar{\lambda}^{a} \bar{\sigma}^{\mu}\left(\delta^{a c} \overrightarrow{\partial^{\nu}}-g t^{a b c} A^{b \nu}\right) \lambda^{c}+\bar{\lambda}^{a} \bar{\sigma}^{\mu}\left(-\delta^{a c} \overleftarrow{\partial^{\nu}}-g t^{a b c} A^{b \nu}\right) \lambda^{c}+(\mu \leftrightarrow \nu)\right] \\
& +\left(\mathcal{D}_{i j}^{\mu} \phi_{j}\right)^{\dagger}\left(\mathcal{D}_{i k}^{\nu} \phi_{k}\right)+\left(\mathcal{D}_{i j}^{\nu} \phi_{j}\right)^{\dagger}\left(\mathcal{D}_{i k}^{\mu} \phi_{k}\right)+\frac{i}{4}\left[\bar{\chi}_{i} \bar{\sigma}^{\mu}\left(\delta_{i j} \overrightarrow{\partial^{\nu}}+i g T_{i j}^{a} A^{a \nu}\right) \chi_{j}\right. & \\
& \left.+\bar{\chi}_{i} \bar{\sigma}^{\mu}\left(-\delta_{i j} \overleftarrow{\partial^{\nu}}+i g T_{i j}^{a} A^{a \nu}\right) \chi_{j}+(\mu \leftrightarrow \nu)\right]-\eta^{\mu \nu} \mathcal{L}+T_{I}^{\mu \nu}, & \text { Similar pat } \\
& \partial_{\mu} R^{\mu}=\frac{g^{2}}{16 \pi^{2}}\left(T(A)-\frac{1}{3} T(R)\right) F^{a \mu \nu} \tilde{F}_{\mu \nu}^{a}, & \text { in a superc } \\
& \bar{\sigma}_{\mu} S_{A}^{\mu}=-i \frac{3 g^{2}}{8 \pi^{2}}\left(T(A)-\frac{1}{3} T(R)\right)\left(\bar{\lambda}^{a} \bar{\sigma}^{\mu \nu}\right)_{A} F_{\mu \nu}^{a}, & \text { theory } \\
\eta_{\mu \nu} T^{\mu \nu} & =-\frac{3 g^{2}}{32 \pi^{2}}\left(T(A)-\frac{1}{3} T(R)\right) F^{a \mu \nu} F_{\mu \nu}^{a} . &
\end{array}
$$

Chiral and trace anomalies are related to anomaly poles.

(a)

(b)

(c)

(d)

Similar pattern as for the TJJ correlator, just more complex. One single form factor generates the anomaly

If we move away from the conformal limit And give the fields a mass " m " then The anomaly form factor is more complicated
$\Gamma_{(R)}^{\mu \alpha \beta}(p, q)=i \frac{g^{2} T(R)}{12 \pi^{2}} \Phi_{1}\left(k^{2}, m^{2}\right) \frac{k^{\mu}}{k^{2}} \varepsilon[p, q, \alpha, \beta]$, $\Gamma_{(S)}^{\mu \alpha}(p, q)=i \frac{g^{2} T(R)}{6 \pi^{2} k^{2}} \Phi_{1}\left(k^{2}, m^{2}\right) s_{1}^{\mu \alpha}$

(a)

(b)

(c)

(d)

$S_{\text {axion }}=-\frac{g^{2}}{4 \pi^{2}}\left(T(A)-\frac{T(R)}{3}\right) \int d^{4} z d^{4} x \partial^{\mu} B_{\mu}(z) \frac{1}{\square_{z x}} \frac{1}{4} F_{\alpha \beta}(x) \tilde{F}^{\alpha \beta}(x)$
$S_{\text {dilatino }}=\frac{g^{2}}{2 \pi^{2}}\left(T(A)-\frac{T(R)}{3}\right) \int d^{4} z d^{4} x\left[\partial_{\nu} \Psi_{\mu}(z) \sigma^{\mu \nu} \sigma^{\rho} \frac{\overleftarrow{\partial_{\rho}}}{\square_{z x}} \bar{\sigma}^{\alpha \beta} \bar{\lambda}(x) \frac{1}{2} F_{\alpha \beta}(x)+\right.$ h.c. $]$
$S_{\text {dilaton }}=-\frac{g^{2}}{8 \pi^{2}}\left(T(A)-\frac{T(R)}{3}\right) \int d^{4} z d^{4} x\left(\square h(z)-\partial^{\mu} \partial^{\nu} h_{\mu \nu}(z)\right) \frac{1}{\square_{z x}} \frac{1}{4} F_{\alpha \beta}(x) F^{\alpha \beta}(x)$.

$$
\frac{1}{\pi} \int_{0}^{\infty} \rho\left(s, m^{2}\right) d s=f
$$

with the constant f independent of any mass (or other) parameter which characterizes the thresholds or the strengths of the resonant states eventually present in the integration region $(s>0)$.

Figure 7: 3-D Plot of the spectral density ρ_{χ} in the variables s and m^{2}.

EXACT SUM RULE

The form factor that carries the chiral And conformal anomaly away from the critical point c shows a branch cut.

The spectral dentity exhibits a pole As $m \rightarrow 0$

$$
\lim _{m \rightarrow 0} \rho_{\chi}\left(s, m^{2}\right)=\lim _{m \rightarrow 0} \frac{2 \pi m^{2}}{s^{2}} \log \left(\frac{1+\sqrt{\tau\left(s, m^{2}\right)}}{1-\sqrt{\tau\left(s, m^{2}\right)}}\right) \theta\left(s-4 m^{2}\right)=\pi \delta(s)
$$

Delle Rose, CC

THESE ANALYSIS ARE PURELY PERTURBATIVE.

Trace Anomaly, Massless Scalars and the Gravitational Coupling of QCD.
Armillis, Delle Rose, CC
\#Published in: Phys.Rev.D 82 (2010) 064023, e-Print: 1005.4173 [hep-ph]

$$
\begin{aligned}
& T_{\mu \nu}=-g_{\mu \nu} \mathcal{L}_{Q C D}-F_{\mu \rho}^{a} F_{\nu}^{a \rho}-\frac{1}{\xi} g_{\mu \nu} \partial^{\rho}\left(A_{\rho}^{a} \partial^{\sigma} A_{\sigma}^{a}\right)+\frac{1}{\xi}\left(A_{\nu}^{a} \partial_{\mu}\left(\partial^{\sigma} A_{\sigma}^{a}\right)+A_{\mu}^{a} \partial_{\nu}\left(\partial^{\sigma} A_{\sigma}^{a}\right)\right) \\
& +\frac{i}{4}\left[\bar{\psi} \gamma_{\mu}\left(\vec{\partial}_{\nu}-i g T^{a} A_{\nu}^{a}\right) \psi-\bar{\psi}\left(\overleftarrow{\partial}_{\nu}+i g T^{a} A_{\nu}^{a}\right) \gamma_{\mu} \psi+\bar{\psi} \gamma_{\nu}\left(\vec{\partial}_{\mu}-i g T^{a} A_{\mu}^{a}\right) \psi\right. \\
& \left.-\bar{\psi}\left(\overleftarrow{\partial}_{\mu}+i g T^{a} A_{\mu}^{a}\right) \gamma_{\nu} \psi\right]+\partial_{\mu} \bar{\omega}^{a}\left(\partial_{\nu} \omega^{a}-g f^{a b c} A_{\nu}^{c} \omega^{b}\right)+\partial_{\nu} \bar{\omega}^{a}\left(\partial_{\mu} \omega^{a}-g f^{a b c} A_{\mu}^{c} \omega^{b}\right), \\
& \begin{aligned}
T_{\mu \nu}^{g . f .} & =\frac{1}{\xi}\left[A_{\nu}^{a} \partial_{\mu}\left(\partial \cdot A^{a}\right)+A_{\mu}^{a} \partial_{\nu}\left(\partial \cdot A^{a}\right)\right]-\frac{1}{\xi} g_{\mu \nu}\left[-\frac{1}{2}(\partial \cdot A)^{2}+\partial^{\rho}\left(A_{\rho}^{a} \partial \cdot A^{a}\right)\right], \\
T_{\mu \nu}^{g h} & =\partial_{\mu} \bar{\omega}^{a} D_{\nu}^{a b} \omega^{b}+\partial_{\nu} \bar{\omega}^{a} D_{\mu}^{a b} \omega^{b}-g_{\mu \nu} \partial^{\rho} \bar{\omega}^{a} D_{\rho}^{a b} \omega^{b} .
\end{aligned} \\
& \mathcal{L}_{i n t}=-\frac{1}{2} \kappa h^{\mu \nu} T_{\mu \nu} . \\
& \partial^{\mu} T_{\mu \nu}=-\frac{\delta S}{\delta \psi} \partial_{\nu} \psi-\partial_{\nu} \bar{\psi} \frac{\delta S}{\delta \bar{\psi}}+\frac{1}{2} \partial^{\mu}\left(\frac{\delta S}{\delta \psi} \sigma_{\mu \nu} \psi-\bar{\psi} \sigma_{\mu \nu} \frac{\delta S}{\delta \bar{\psi}}\right)-\partial_{\nu} A_{\mu}^{a} \frac{\delta S}{\delta A_{\mu}^{a}} \\
& +\partial_{\mu}\left(A_{\nu}^{a} \frac{\delta S}{\delta A_{\mu}^{a}}\right)-\frac{\delta S}{\delta \omega^{a}} \partial_{\nu} \omega^{a}-\partial_{\nu} \bar{\omega}^{a} \frac{\delta S}{\delta \bar{\omega}^{a}}
\end{aligned}
$$

$$
\begin{aligned}
Z[J, \eta, \bar{\eta}, \chi, \bar{\chi}, h]=\int \mathcal{D} A \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} \omega \mathcal{D} \bar{\omega} \exp \left\{i \int d ^ { 4 } x \left(\mathcal{L}+J_{\mu} A^{\mu}\right.\right. \\
\left.\left.+\bar{\eta} \psi+\bar{\psi} \eta+\bar{\chi} \omega+\bar{\omega} \chi+h_{\mu \nu} T^{\mu \nu}\right)\right\}
\end{aligned}
$$

Functional derivation of WIs
$\exp i W[J, \eta, \bar{\eta}, \chi, \bar{\chi}, h]=\frac{Z[J, \eta, \bar{\eta}, \chi, \bar{\chi}, h]}{Z[0,0,0,0,0,0]}$

$$
\Gamma\left[A_{c}, \bar{\psi}_{c}, \psi_{c}, \bar{\omega}_{c}, \omega_{c}, h\right]=W[J, \eta, \bar{\eta}, \chi, \bar{\chi}, h]-\int d^{4} x\left(J_{\mu} A_{c}^{\mu}+\bar{\eta} \psi_{c}+\bar{\psi}_{c} \eta+\bar{\chi} \omega_{c}+\bar{\omega}_{c} \chi\right)
$$

$$
\begin{align*}
\partial_{\mu} \frac{\delta \Gamma}{\delta h_{\mu \nu}} & =-\frac{\delta \Gamma}{\delta \psi_{c}} \partial^{\nu} \psi_{c}-\partial^{\nu} \bar{\psi}_{c} \frac{\delta \Gamma}{\delta \bar{\psi}_{c}}+\frac{1}{2} \partial_{\mu}\left(\frac{\delta \Gamma}{\delta \psi_{c}} \sigma^{\mu \nu} \psi_{c}-\bar{\psi}_{c} \sigma^{\mu \nu} \frac{\delta \Gamma}{\delta \bar{\psi}_{c}}\right)-\partial^{\nu} A_{c}^{\mu} \frac{\delta \Gamma}{\delta A_{c}^{\mu}}+\partial^{\mu}\left(A_{c}^{\nu} \frac{\delta \Gamma}{\delta A_{c}^{\mu}}\right) \\
& -\frac{\delta \Gamma}{\delta \omega_{c}} \partial^{\nu} \omega_{c}-\partial^{\nu} \bar{\omega}_{c} \frac{\delta \Gamma}{\delta \bar{\omega}_{c}}, \tag{36}
\end{align*}
$$

$$
\begin{aligned}
\partial^{\mu}\left\langle T_{\mu \nu}(x) A_{\alpha}^{a}\left(x_{1}\right) A_{\beta}^{b}\left(x_{2}\right)\right\rangle_{\text {trunc }} & =-\partial_{\nu} \delta^{4}\left(x_{1}-x\right) D_{\alpha \beta}^{-1}\left(x_{2}, x\right)-\partial_{\nu} \delta^{4}\left(x_{2}-x\right) D_{\alpha \beta}^{-1}\left(x_{1}, x\right) \\
& +\partial^{\mu}\left(g_{\alpha \nu} \delta^{4}\left(x_{1}-x\right) D_{\beta \mu}^{-1}\left(x_{2}, x\right)+g_{\beta \nu} \delta^{4}\left(x_{2}-x\right) D_{\alpha \mu}^{-1}\left(x_{1}, x\right)\right)
\end{aligned}
$$

$k^{\mu}\left\langle T_{\mu \nu}(k) A_{\alpha}(p) A_{\beta}(q)\right\rangle_{t r u n c}=q_{\mu} D_{\alpha \mu}^{-1}(p) g_{\beta \nu}+p_{\mu} D_{\beta \mu}^{-1}(q) g_{\alpha \nu}-q_{\nu} D_{\alpha \beta}^{-1}(p)-p_{\nu} D_{\alpha \beta}^{-1}(q)$.
$\left\langle T_{\mu}^{\mu}(0) A_{\alpha}(p) A_{\beta}(-p)\right\rangle_{t r u n c}=\left(2-d+p \cdot \frac{\partial}{\partial p}\right) D_{\alpha \beta}^{-1}(p)$

Semiclassical

Formulation via the effective action

WI in momentum space

(a)

+ exch. +

contributions

$\Gamma^{\mu \nu \alpha \beta}(p, q)=\Gamma_{q}^{\mu \nu \alpha \beta}(p, q)+\Gamma_{g}^{\mu \nu \alpha \beta}(p, q)$,

$$
\phi_{1}^{\mu \nu \alpha \beta}(p, q)=\left(s g^{\mu \nu}-k^{\mu} k^{\nu}\right) u^{\alpha \beta}(p, q),
$$

$$
\phi_{2}^{\mu \nu \alpha \beta}(p, q)=-2 u^{\alpha \beta}(p, q)\left[s g^{\mu \nu}+2\left(p^{\mu} p^{\nu}+q^{\mu} q^{\nu}\right)-4\left(p^{\mu} q^{\nu}+q^{\mu} p^{\nu}\right)\right]
$$

$$
\phi_{3}^{\mu \nu \alpha \beta}(p, q)=\left(p^{\mu} q^{\nu}+p^{\nu} q^{\mu}\right) g^{\alpha \beta}+\frac{s}{2}\left(g^{\alpha \nu} g^{\beta \mu}+g^{\alpha \mu} g^{\beta \nu}\right)
$$

Fourier transform of second variation of FF

$$
-g^{\mu \nu}\left(\frac{s}{2} g^{\alpha \beta}-q^{\alpha} p^{\beta}\right)-\left(g^{\beta \nu} p^{\mu}+g^{\beta \mu} p^{\nu}\right) q^{\alpha}-\left(g^{\alpha \nu} q^{\mu}+g^{\alpha \mu} q^{\nu}\right) p^{\beta},
$$

$$
u^{\alpha \beta}(p, q) \equiv(p \cdot q) g^{\alpha \beta}-q^{\alpha} p^{\beta},
$$

$$
\begin{aligned}
& \Phi_{1 q}\left(s, 0,0, m^{2}\right)=-\frac{g^{2}}{36 \pi^{2} s}+ \\
& \begin{aligned}
\Phi_{2 q}\left(s, 0,0, m^{2}\right)= & -\frac{g^{2} m^{2}}{6 \pi^{2} s^{2}}-\frac{g^{2} m^{2}}{6 \pi^{2} s} \mathcal{C}_{0}\left(s, 0,0, m^{2}\right)\left[\frac{1}{2}-\frac{2 m^{2}}{s}\right] \\
& \frac{g^{2} m^{2}}{24 \pi^{2} s^{2}}-\frac{g^{2} m^{2}}{8 \pi^{2} s^{2}} \mathcal{D}\left(s, 0,0, m^{2}\right) \\
& -\frac{g^{2} m^{2}}{12 \pi^{2} s} \mathcal{C}_{0}\left(s, 0,0, m^{2}\right)\left[\frac{1}{2}+\frac{m^{2}}{s}\right] \\
\Phi_{3 q}\left(s, 0,0, m^{2}\right)= & \frac{11 g^{2}}{288 \pi^{2}}+\frac{g^{2} m^{2}}{8 \pi^{2} s}+g^{2} \mathcal{C}_{0}\left(s, 0,0, m^{2}\right)\left[\frac{m^{4}}{4 \pi^{2} s}+\frac{m^{2}}{8 \pi^{2}}\right] \\
& +\frac{5 g^{2} m^{2}}{24 \pi^{2} s} \mathcal{D}\left(s, 0,0, m^{2}\right)+\frac{g^{2}}{24 \pi^{2}} \mathcal{B}_{0}^{\overline{M S}}\left(s, m^{2}\right),
\end{aligned}
\end{aligned}
$$

Pole in the quark sector

Similar pole in the gluon sector

$$
\begin{align*}
& \Phi_{1}(s, 0,0)=-\frac{g^{2}}{72 \pi^{2} s}\left(2 n_{f}-11 C_{A}\right)+\frac{g^{2}}{6 \pi^{2}} \sum_{i=1}^{n_{f}} m_{i}^{2}\left\{\frac{1}{s^{2}}-\frac{1}{2 s} \mathcal{C}_{0}\left(s, 0,0, m_{i}^{2}\right)\left[1-\frac{4 m_{i}^{2}}{s}\right]\right\}, \\
& \Phi_{2}(s, 0,0)=-\frac{g^{2}}{288 \pi^{2} s}\left(n_{f}-C_{A}\right) \\
& -\frac{g^{2}}{24 \pi^{2}} \sum_{i=1}^{n_{f}} m_{i}^{2}\left\{\frac{1}{s^{2}}+\frac{3}{s^{2}} \mathcal{D}\left(s, 0,0, m_{i}^{2}\right)+\frac{1}{s} \mathcal{C}_{0}\left(s, 0,0, m_{i}^{2}\right)\left[1+\frac{2 m_{i}^{2}}{s}\right]\right\}, \tag{93}\\
& \Phi_{3}(s, 0,0)=\frac{g^{2}}{288 \pi^{2}}\left(11 n_{f}-65 C_{A}\right)-\frac{g^{2} C_{A}}{8 \pi^{2}}\left[\frac{11}{6} \mathcal{B}_{0}^{\overline{M S}}(s, 0)-\mathcal{B}_{0}^{\overline{M S}}(0,0)+s \mathcal{C}_{0}(s, 0,0,0)\right] \\
& +\frac{g^{2}}{8 \pi^{2}} \sum_{i=1}^{n_{f}}\left\{\frac{1}{3} \mathcal{B}_{0}^{\overline{M S}}\left(s, m_{i}^{2}\right)+m_{i}^{2}\left[\frac{1}{s}+\frac{5}{3 s} \mathcal{D}\left(s, 0,0, m_{i}^{2}\right)+\mathcal{C}_{0}\left(s, 0,0, m_{i}^{2}\right)\left[1+\frac{2 m_{i}^{2}}{s}\right]\right]\right\}, \quad=c F_{\alpha \beta} F^{\alpha \beta}=-\frac{e^{2}}{24 \pi^{2}} F_{\alpha \beta} F^{\alpha \beta} . \\
& \text { Notice that the } \\
& \text { residui, combined, } \\
& \text { equal the beta } \\
& \text { function }
\end{align*}
$$

$$
\begin{aligned}
S_{\text {pole }} & =-\frac{c}{6} \int d^{4} x d^{4} y R^{(1)}(x) \square^{-1}(x, y) F_{\alpha \beta}^{a} F^{a \alpha \beta} \\
& =\frac{1}{3} \frac{g^{3}}{16 \pi^{2}}\left(-\frac{11}{3} C_{A}+\frac{2}{3} n_{f}\right) \int d^{4} x d^{4} y R^{(1)}(x) \square^{-1}(x, y) F_{\alpha \beta} F^{\alpha \beta}
\end{aligned}
$$

$$
R_{x}^{(1)} \equiv \partial_{\mu}^{x} \partial_{\nu}^{x} h^{\mu \nu}-\square h, \quad h=\eta_{\mu \nu} h^{\mu \nu}
$$

$$
c=-2 \frac{\beta(g)}{g} .
$$

$$
\begin{aligned}
& S_{\text {anom }}[g, A]= \\
& \frac{1}{8} \int d^{4} x \sqrt{-g} \int d^{4} x^{\prime} \sqrt{-g^{\prime}}\left(E-\frac{2}{3} \square R\right)_{x}^{-1} \Delta_{4}^{-1}\left(x, x^{\prime}\right)\left[2 b F+b^{\prime}\left(E-\frac{2}{3} \square R\right)+2 c F_{\mu \nu} F^{\mu \nu}\right]_{x^{\prime}},
\end{aligned}
$$

$$
F=C_{\lambda \mu \nu \rho} C^{\lambda \mu \nu \rho}=R_{\lambda \mu \nu \rho} R^{\lambda \mu \nu \rho}-2 R_{\mu \nu} R^{\mu \nu}+\frac{R^{2}}{3}
$$

$$
E={ }^{*} R_{\lambda \mu \nu \rho}{ }^{*} R^{\lambda \mu \nu \rho}=R_{\lambda \mu \nu \rho} R^{\lambda \mu \nu \rho}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}
$$

$$
\Delta_{4} \equiv \nabla_{\mu}\left(\nabla^{\mu} \nabla^{\nu}+2 R^{\mu \nu}-\frac{2}{3} R g^{\mu \nu}\right) \nabla_{\nu}=\square^{2}+2 R^{\mu \nu} \nabla_{\mu} \nabla_{\nu}+\frac{1}{3}\left(\nabla^{\mu} R\right) \nabla_{\mu}-\frac{2}{3} R \square .
$$

${ }^{(a)}$ Claudio Corianò, ${ }^{(a)(b)}$ Mario Creti, ${ }^{(a)}$ Stefano Lionetti, ${ }^{(c)}$ Matteo Maria Maglio,

$$
\Delta_{4} \equiv \nabla_{\mu}\left(\nabla^{\mu} \nabla^{\nu}+2 R^{\mu \nu}-\frac{2}{3} R g^{\mu \nu}\right) \nabla_{\nu}=\square^{2}+2 R^{\mu \nu} \nabla_{\mu} \nabla_{\nu}+\frac{1}{3}\left(\nabla^{\mu} R\right) \nabla_{\mu}-\frac{2}{3} R \square
$$

Paneitz operator

$\sqrt{-g} \Delta_{4} \chi_{0}=\sqrt{-\bar{g}} \bar{\Delta}_{4} \chi_{0}$,
Weyl invariant if acting on conformal scalars (ie fields of vanishing scaling dimensions)

CFT in coordinate space (scalar primary operators) in $d=4$

$$
\left\langle\mathcal{O}_{i}\left(x_{i}\right) \mathcal{O}_{j}\left(x_{j}\right)\right\rangle=\frac{C_{i j}}{\left|x_{i}-x_{j}\right|^{\Delta_{i}+\Delta_{j}}} . \quad\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}} x_{23}^{\Delta_{2}+\Delta_{3}-\Delta-1} x_{13}^{\Delta_{3}+\Delta_{1}-\Delta_{2}}} .
$$

dilatation
$\left[\sum_{j=1}^{n} \Delta_{j}+\sum_{j=1}^{n} x_{j}^{\alpha} \frac{\partial}{\partial x_{j}^{\alpha}}\right]\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle=\quad \sum_{j=1}^{n}\left(2 \Delta_{j} x_{j}^{\kappa}+2 x_{j}^{\kappa} x_{j}^{\alpha} \frac{\partial}{\partial x_{j \alpha}}-x_{j}^{2} \frac{\partial}{\partial x_{j \kappa}}\right)\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle=0$,

No anomalies yet and no spin!

The rederivation of these expressions in momentum space is in
Solving the Conformal Constraints for Scalar Operators in Momentum Space and the Evaluation of Feynman's Master Integrals
-JHEP 07 (2013) 011 e-Print: 1304.6944 (Delle Rose, Mottola, Serino, CC)

Recovering the correlators from momentum space may not be easy as in coordinate space, But once you do it, you can connect with Amplitudes and test the expressions against Free field theory realizations

$$
\begin{aligned}
& {\left[-\sum_{r=1}^{n-1}\left(p_{r \mu} \frac{\partial}{\partial p_{r \mu}}+d\right)+\sum_{r=1}^{n} \eta_{r}\right]\left\langle\mathcal{O}_{1}^{i_{1}}\left(p_{1}\right) \ldots \mathcal{O}_{r}^{i_{r}}\left(p_{r}\right) \ldots \mathcal{O}_{n}^{i_{n}}\left(p_{n}\right)\right\rangle=0} \\
& \sum_{r=1}^{n-1}\left(p_{r \mu} \frac{\partial^{2}}{\partial p_{r}^{\nu} \partial p_{r \nu}}-2 p_{r \nu} \frac{\partial^{2}}{\partial p_{r}^{\mu} \partial p_{r \nu}}+2\left(\eta_{r}-d\right) \frac{\partial}{\partial p_{r}^{\mu}}+2\left(\Sigma_{\mu \nu}^{(r)}\right)_{j_{r}}^{i_{r}} \frac{\partial}{\partial p_{r \nu}}\right) \\
& \times\left\langle\left\langle\mathcal{O}_{1}^{i_{1}}\left(p_{1}\right) \ldots \mathcal{O}_{r}^{j_{r}}\left(p_{r}\right) \ldots \mathcal{O}_{n}^{i_{n}}\left(p_{n}\right)\right\rangle=0,\right.
\end{aligned}
$$

Transform the eqs to momentum space and solve them. They can be mapped to generalized hypergeometric functions

No anomalies and no spin

$$
G_{123}\left(p_{1}^{2}, p_{2}^{2}, p_{3}^{2}\right)=\left(p_{3}^{2}\right)^{-d+\frac{1}{2}\left(\eta_{1}+\eta_{2}+\eta_{3}\right)} \Phi(x, y) \quad \text { with } \quad x=\frac{p_{1}^{2}}{p_{3}^{2}}, \quad y=\frac{p_{2}^{2}}{p_{3}^{2}},
$$

ansatz

Delle Rose, Serino, Mototla, CC

$$
\begin{aligned}
& \Gamma\left(\eta_{1}-\frac{d}{2}\right) \Gamma\left(\eta_{2}-\frac{d}{2}\right) \Gamma\left(d-\frac{\eta_{1}}{2}-\frac{\eta_{2}}{2}-\frac{\eta_{3}}{2}\right) \Gamma\left(\frac{d}{2}-\frac{\eta_{1}}{2}-\frac{\eta_{2}}{2}+\frac{\eta_{3}}{2}\right) \\
& \times F_{4}\left(\frac{d}{2}-\frac{\eta_{1}+\eta_{2}-\eta_{3}}{2}, d-\frac{\eta_{1}+\eta_{2}+\eta_{3}}{2} ; \frac{d}{2}-\eta_{1}+1, \frac{d}{2}-\eta_{2}+1 ; x, y\right) \\
& +\Gamma\left(\frac{d}{2}-\eta_{1}\right) \Gamma\left(\eta_{2}-\frac{d}{2}\right) \Gamma\left(\frac{\eta_{1}}{2}-\frac{\eta_{2}}{2}+\frac{\eta_{3}}{2}\right) \Gamma\left(\frac{d}{2}+\frac{\eta_{1}}{2}-\frac{\eta_{2}}{2}-\frac{\eta_{3}}{2}\right) \\
& \times x^{\eta_{1}-\frac{d}{2}} \Gamma_{4}\left(\frac{d}{2}-\frac{\eta_{2}+\eta_{3}-\eta_{1}}{2}, \frac{\eta_{1}+\eta_{3}-\eta_{2}}{2} ;-\frac{d}{2}+\eta_{1}+1, \frac{d}{2}-\eta_{2}+1 ; x, y\right) \\
& +\Gamma\left(\eta_{1}-\frac{d}{2}\right) \Gamma\left(\frac{d}{2}-\eta_{2}\right) \Gamma\left(-\frac{\eta_{1}}{2}+\frac{\eta_{2}}{2}+\frac{\eta_{3}}{2}\right) \Gamma\left(\frac{d}{2}-\frac{\eta_{1}}{2}+\frac{\eta_{2}}{2}-\frac{\eta_{3}}{2}\right) \\
& \times y^{\eta_{2}-\frac{d}{2}} F_{4}\left(\frac{d}{2}--\frac{\eta_{1}+\eta_{3}-\eta_{2}}{2}, \frac{\eta_{2}+\eta_{3}-\eta_{1}}{2} ; \frac{d}{2}-\eta_{1}+1,-\frac{d}{2}+\eta_{2}+1 ; x, y\right) \\
& +\Gamma\left(\frac{d}{2}-\eta_{1}\right) \Gamma\left(\frac{d}{2}-\eta_{2}\right) \Gamma\left(\frac{\eta_{1}}{2}+\frac{\eta_{2}}{2}-\frac{\eta_{3}^{3}}{2}\right) \Gamma\left(-\frac{d}{2}+\frac{\eta_{1}}{2}+\frac{\eta_{2}}{2}+\frac{\eta_{3}}{2}\right) \\
& \left.\times x^{\eta_{1}-\frac{d}{2} y_{2}-\frac{d}{2}} F_{4}\left(-\frac{d}{2}+\frac{\eta_{1}+\eta_{2}+\eta_{3}}{2}, \frac{\eta_{1}+\eta_{2}-\eta_{3}}{2} ;-\frac{d}{2}+\eta_{1}+1,-\frac{d}{2}+\eta_{2}+1 ; x, y\right)\right\} .
\end{aligned}
$$

General solution in terms of a single constant C123

$$
F_{4}\left(\alpha, \beta ; \gamma, \gamma^{\prime} ; x, y\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{(\alpha)_{i+j}(\beta)_{i+j}}{(\gamma)_{i}\left(\gamma^{\prime}\right)_{j}} \frac{x^{i}}{i!} \frac{y^{j}}{j!}
$$

4 point functions
Maglio, C. C.
JHEP 09 (2019) 107 e-Print: 1903.05047

$$
\begin{gathered}
\left\langle O\left(p_{1}\right) O\left(p_{2}\right) O\left(p_{3}\right) O\left(\bar{p}_{4}\right)\right\rangle=\Phi\left(p_{1}, p_{2}, p_{3}, p_{4}, s, t\right), \\
{\left[\sum_{i=1}^{4} \Delta_{i}-3 d-\sum_{i=1}^{3} p_{i}^{\mu} \frac{\partial}{\partial p_{i}^{\mu}}\right]\left\langle O\left(p_{1}\right) O\left(p_{2}\right) O\left(p_{3}\right) O\left(\bar{p}_{4}\right)\right\rangle=0} \\
{\left[\left(\Delta_{t}-3 d\right)-\sum_{i=1}^{4} p_{i} \frac{\partial}{\partial p_{i}}-s \frac{\partial}{\partial s}-t \frac{\partial}{\partial t}\right] \Phi\left(p_{1}, p_{2}, p_{3}, p_{4}, s, t\right)=0,} \\
\sum_{i=1}^{3}\left[2\left(\Delta_{i}-d\right) \frac{\partial}{\partial p_{i \kappa}}-2 p_{i}^{\alpha} \frac{\partial^{2}}{\partial p_{i}^{\alpha} \partial p_{i}^{\kappa}}+p_{i}^{\kappa} \frac{\partial^{2}}{\partial p_{i}^{\alpha} \partial p_{i \alpha}}\right]\left\langle O\left(p_{1}\right) O\left(p_{2}\right) O\left(p_{3}\right) O\left(\bar{p}_{4}\right)\right\rangle=0 . \\
\sum_{i=1}^{3} p_{i}^{\kappa} C_{i}=0,
\end{gathered}
$$

$$
\begin{aligned}
C_{2}=\{ & \frac{\partial^{2}}{\partial p_{2}^{2}}+\frac{\left(d-2 \Delta_{2}+1\right)}{p_{2}} \frac{\partial}{\partial p_{2}}-\frac{\partial^{2}}{\partial p_{4}^{2}}-\frac{\left(d-2 \Delta_{4}+1\right)}{p_{4}} \frac{\partial}{\partial p_{4}} \\
& +\frac{1}{s} \frac{\partial}{\partial s}\left(p_{1} \frac{\partial}{\partial p_{1}}+p_{2} \frac{\partial}{\partial p_{2}}-p_{3} \frac{\partial}{\partial p_{3}}-p_{4} \frac{\partial}{\partial p_{4}}\right)+\frac{\left(\Delta_{3}+\Delta_{4}-\Delta_{1}-\Delta_{2}\right)}{s} \frac{\partial}{\partial s} \\
& +\frac{1}{t} \frac{\partial}{\partial t}\left(p_{2} \frac{\partial}{\partial p_{2}}+p_{3} \frac{\partial}{\partial p_{3}}-p_{1} \frac{\partial}{\partial p_{1}}-p_{4} \frac{\partial}{\partial p_{4}}\right)+\frac{\left(\Delta_{1}+\Delta_{4}-\Delta_{2}-\Delta_{3}\right)}{t} \frac{\partial}{\partial t} \\
& \left.+\frac{\left(p_{2}^{2}-p_{4}^{2}\right)}{s t} \frac{\partial^{2}}{\partial s \partial t}\right\} \Phi\left(p_{1}, p_{2}, p_{3}, p_{4}, s, t\right)=0
\end{aligned}
$$

For some special choices of the scaling dimensions We can solve the equations

YANGIAN SYMMETRY: 4 point functions can also be fixed in the scalar case, probably
The reconstruction can be also performed in the tensor case

DUAL CONFORMAL/CONFORMAL

$$
\Phi_{\text {Box }}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\int \frac{d^{d} k}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2}\left(k+p_{1}+p_{2}+p_{3}\right)^{2}}
$$

and apply the redefinition in terms of momentum variables y_{i}

$$
k=y_{51}, \quad p_{1}=y_{12}, \quad p_{2}=y_{23}, \quad p_{3}=y_{34}
$$

with $y_{i j}=y_{i}-y_{j}$, thereby rewriting the integral in the form

$$
\Phi_{B o x}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\int \frac{d^{d} y_{5}}{y_{15}^{2} y_{25}^{2} y_{35}^{2} y_{45}^{2}}
$$

Maglio, CC

$$
\begin{array}{lll}
\left\langle O\left(p_{1}\right) O\left(p_{2}\right) O\left(p_{3}\right) O\left(p_{4}\right)\right\rangle= & & \mathrm{K}_{i}=\frac{\partial^{2}}{\partial p_{i}^{2}}+\frac{\left(d-2 \Delta_{i}+1\right)}{p_{i}} \frac{\partial}{\partial p_{i}}, \\
= & \sum_{a, b} c(a, b)\left[\left(s^{2} t^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{1}^{2} p_{3}^{2}}{s^{2} t^{2}}\right)^{a}\left(\frac{p_{2}^{2} p_{4}^{2}}{s^{2} t^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{1}^{2} p_{3}^{2}}{s^{2} t^{2}}, \frac{p_{2}^{2} p_{4}^{2}}{s^{2} t^{2}}\right)\right. & \mathrm{K}_{i j}=\mathrm{K}_{i}-\mathrm{K}_{j} . \\
& +\left(s^{2} u^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{2}^{2} p_{3}^{2}}{s^{2} u^{2}}\right)^{a}\left(\frac{p_{1}^{2} p_{4}^{2}}{s^{2} u^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{2}^{2} p_{3}^{2}}{s^{2} p^{2}}, \frac{p_{1}^{2} p_{4}^{2}}{s^{2} u^{2}}\right) \\
& +\left(t^{2} u^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{1}^{2} p_{2}^{2}}{t^{2} u^{2}}\right)^{a}\left(\frac{p_{3}^{2} p_{4}^{2}}{t^{2} u^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{1}^{2} p_{2}^{2}}{\left.\left.t^{2} u^{2}, \frac{p_{3}^{2} p_{4}^{2}}{t^{2} u^{2}}\right)\right]}\right.
\end{array}
$$

$\alpha(a, b)=\frac{3}{4} d-\Delta+a+b$,
$\beta(a, b)=\frac{3}{4} d-\Delta+a+b$,
$\gamma(a)=\frac{d}{2}-\Delta+1+2 a$,
$\gamma^{\prime}(b)=\frac{d}{2}-\Delta+1+2 b$.

Maglio, CC

Tensor correlators in coordinate space had been studied long ago by Osborn and Petkou.

The important step in these analsys was the inclusion of the anomaly contribution in coordinate space Implications of conformal invariance in field theories for general dimensions
-Annals Phys. 231 (1994) 311-362 e-Print: hep-th/9307010

Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions
-Nucl.Phys.B 483 (1997) 431-474 e-Print: hep-th/9605009 (Erdmenger Osborn)

Not so practical beyond 3 point functions

Anomalies come from the coalescence of all the external coordinates.
$\partial_{\nu}\left\langle T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right) T^{\alpha \beta}\left(x_{3}\right)\right\rangle=\left[\left\langle T^{\rho \sigma}\left(x_{1}\right) T^{\alpha \beta}\left(x_{3}\right)\right\rangle \partial^{\mu} \delta\left(x_{1}, x_{2}\right)+\left\langle T^{\alpha \beta}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)\right\rangle \partial^{\mu} \delta\left(x_{1}, x_{3}\right)\right]$

$$
\begin{aligned}
& -\left[\delta^{\mu \rho}\left\langle T^{\nu \sigma}\left(x_{1}\right) T^{\alpha \beta}\left(x_{3}\right)\right\rangle+\delta^{\mu \sigma}\left\langle T^{\nu \rho}\left(x_{1}\right) T^{\alpha \beta}\left(x_{3}\right)\right\rangle\right] \partial_{\nu} \delta\left(x_{1}, x_{2}\right) \\
& -\left[\delta^{\mu \alpha}\left\langle T^{\nu \beta}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)\right\rangle+\delta^{\mu \beta}\left\langle T^{\nu \alpha}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)\right\rangle\right] \partial_{\nu} \delta\left(x_{1}, x_{3}\right) .
\end{aligned}
$$

TENSOR CORRELATORS

Conservation WI

$$
\begin{aligned}
p_{1 \nu_{1}}\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right)\right. & \left.T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle=-p_{2}^{\mu_{1}}\left\langle T^{\mu_{2} \nu_{2}}\left(p_{1}+p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle-p_{3}^{\mu_{1}}\left\langle T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{1}+p_{3}\right)\right\rangle \\
& +p_{2 \alpha}\left[\delta^{\mu_{1} \nu_{2}}\left\langle T^{\mu_{2} \alpha}\left(p_{1}+p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle+\delta^{\mu_{1} \mu_{2}}\left\langle T^{\nu_{2} \alpha}\left(p_{1}+p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle\right] \\
& +p_{3 \alpha}\left[\delta^{\mu_{1} \nu_{3}}\left\langle T^{\mu_{3} \alpha}\left(p_{1}+p_{3}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right)\right\rangle+\delta^{\mu_{1} \mu_{3}}\left\langle T^{\nu_{3} \alpha}\left(p_{1}+p_{3}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right)\right\rangle\right] .
\end{aligned}
$$

while naive scale invariance gives the traceless condition

$$
g_{\mu \nu}\left\langle T^{\mu \nu}\right\rangle=0
$$

special CWI's take the form

$$
\begin{aligned}
& 0=K^{\kappa}\left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) T^{\mu_{2} \nu_{2}}\left(x_{2}\right) T^{\mu_{3} \nu_{3}}\left(x_{3}\right)\right\rangle=\sum_{i=1}^{3} K_{i \text { scalar }}^{\kappa}\left(x_{i}\right)\left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) T^{\mu_{2} \nu_{2}}\left(x_{2}\right) T^{\mu_{3} \nu_{3}}\left(x_{3}\right)\right\rangle \\
& +2\left(\delta^{\mu_{1} \kappa} x_{1 \rho}-\delta_{\rho}^{\kappa} x_{1}^{\mu_{1}}\right)\left\langle T^{\rho \nu_{1}}\left(x_{1}\right) T^{\mu_{2} \nu_{2}}\left(x_{2}\right) T^{\mu_{3} \nu_{3}}\left(x_{3}\right)\right\rangle+2\left(\delta^{\nu_{1} \kappa} x_{1 \rho}-\delta_{\rho}^{\kappa} x_{1}^{\nu_{1}}\right)\left\langle T^{\mu_{1} \rho}\left(x_{1}\right) T^{\mu_{2} \nu_{2}}\left(x_{2}\right) T^{\mu_{3} \nu_{3}}\left(x_{3}\right)\right\rangle \\
& +2\left(\delta^{\mu_{2} \kappa} x_{2 \rho}-\delta_{\rho}^{\kappa} x_{2}^{\mu_{2}}\right)\left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) T^{\rho \nu_{2}}\left(x_{2}\right) T^{\mu_{3} \nu_{3}}\left(x_{3}\right)\right\rangle+2\left(\delta^{\nu_{2} \kappa} x_{2 \rho}-\delta_{\rho}^{\kappa} x_{2}^{\nu_{2}}\right)\left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) T^{\mu_{2} \rho}\left(x_{2}\right) T^{\mu_{3} \nu_{3}}\left(x_{3}\right)\right\rangle \\
& +2\left(\delta^{\mu_{3} \kappa} x_{3 \rho}-\delta_{\rho}^{\kappa} x_{3}^{\mu_{3}}\right)\left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) T^{\mu_{2} \nu_{2}}\left(x_{2}\right) T^{\rho \nu_{3}}\left(x_{3}\right)\right\rangle+2\left(\delta^{\nu_{3} \kappa} x_{3 \rho}-\delta_{\rho}^{\kappa} x_{3}^{\nu_{3}}\right)\left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) T^{\mu_{2} \nu_{2}}\left(x_{2}\right) T^{\mu_{3} \rho}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
\beta_{a}(S)=-\frac{3 \pi^{2}}{720}, & \beta_{b}(S)=\frac{\pi^{2}}{720} \\
\beta_{a}(F)=-\frac{9 \pi^{2}}{360}, & \beta_{b}(F)=\frac{11 \pi^{2}}{720} \\
\beta_{a}(G)=-\frac{18 \pi^{2}}{360}, & \beta_{b}(G)=\frac{31 \pi^{2}}{360}
\end{array}
$$

$C^{2}=R_{a b c d} R^{a b c d}-\frac{4}{d-2} R_{a b} R^{a b}+\frac{2}{(d-2)(d-1)} R^{2}, \quad E=R_{a b c d} R^{a b c d}-4 R_{a b} R^{a b}+R^{2}$

$$
\begin{aligned}
& g_{\mu_{1} \nu_{1}}\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle \\
& =4 \mathcal{A}^{\mu_{2} \nu_{2} \mu_{3} \nu_{3}}\left(p_{2}, p_{3}\right)-2\left\langle T^{\mu_{2} \nu_{2}}\left(p_{1}+p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle-2\left\langle T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{1}+p_{3}\right)\right\rangle \\
& =4\left[\beta_{a}\left[C^{2}\right]^{\mu_{2} \nu_{2} \mu_{3} \nu_{3}}\left(p_{2}, p_{3}\right)+\beta_{b}[E]^{\mu_{2} \nu_{2} \mu_{3} \nu_{3}}\left(p_{2}, p_{3}\right)\right] \\
& \quad-2\left\langle T^{\mu_{2} \nu_{2}}\left(p_{1}+p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle-2\left\langle T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{1}+p_{3}\right)\right\rangle .
\end{aligned}
$$

Are affected by the anomaly

$$
\begin{aligned}
\sum_{j=1}^{2} & {\left[2\left(\Delta_{j}-d\right) \frac{\partial}{\partial p_{j}^{\kappa}}-2 p_{j}^{\alpha} \frac{\partial}{\partial p_{j}^{\alpha}} \frac{\partial}{\partial p_{j}^{\kappa}}+\left(p_{j}\right)_{\kappa} \frac{\partial}{\partial p_{j}^{\alpha}} \frac{\partial}{\partial p_{j \alpha}}\right]\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(\bar{p}_{3}\right)\right\rangle } \\
& +2\left(\delta^{\kappa\left(\mu_{1}\right.} \frac{\partial}{\partial p_{1}^{\alpha_{1}}}-\delta_{\alpha_{1}}^{\kappa} \delta^{\lambda\left(\mu_{1}\right.} \frac{\partial}{\partial p_{1}^{\lambda}}\right)\left\langle T^{\left.\nu_{1}\right) \alpha_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(\bar{p}_{3}\right)\right\rangle \\
& +2\left(\delta^{\kappa\left(\mu_{2}\right.} \frac{\partial}{\partial p_{2}^{\alpha_{2}}}-\delta_{\alpha_{2}}^{\kappa} \delta^{\lambda\left(\mu_{2}\right.} \frac{\partial}{\partial p_{2}^{\lambda}}\right)\left\langle T^{\left.\nu_{2}\right) \alpha_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(\bar{p}_{3}\right) T^{\mu_{1} \nu_{1}}\left(p_{1}\right)\right\rangle=0
\end{aligned}
$$

projectors

Reconstruction in the BMS approach

$$
T^{\mu \nu}=t^{\mu \nu}+t_{l o c}^{\mu \nu}
$$

$$
\begin{aligned}
\pi_{\alpha}^{\mu} & =\delta_{\alpha}^{\mu}-\frac{p^{\mu} p_{\alpha}}{p^{2}}, \quad \tilde{\pi}_{\alpha}^{\mu}=\frac{1}{d-1} \pi_{\alpha}^{\mu} \\
\Pi_{\alpha \beta}^{\mu \nu} & =\frac{1}{2}\left(\pi_{\alpha}^{\mu} \pi_{\beta}^{\nu}+\pi_{\beta}^{\mu} \pi_{\alpha}^{\nu}\right)-\frac{1}{d-1} \pi^{\mu \nu} \pi_{\alpha \beta}, \\
\mathcal{I}_{\alpha}^{\mu \nu} & \left.=\frac{1}{p^{2}}\left[2 p^{(\mu} \delta_{\alpha}^{\nu}\right)-\frac{p_{\alpha}}{d-1}\left(\delta^{\mu \nu}+(d-2) \frac{p^{\mu} p^{\nu}}{p^{2}}\right)\right] \\
\mathcal{I}_{\alpha \beta}^{\mu \nu} & =\mathcal{I}_{\alpha}^{\mu \nu} p_{\beta}=\frac{p_{\beta}}{p^{2}}\left(p^{\mu} \delta_{\alpha}^{\nu}+p^{\nu} \delta_{\alpha}^{\mu}\right)-\frac{p_{\alpha} p_{\beta}}{p^{2}}\left(\delta^{\mu \nu}+(d-2) \frac{p^{\mu} p^{\nu}}{p^{2}}\right) \\
\mathcal{L}_{\alpha \beta}^{\mu \nu} & =\frac{1}{2}\left(\mathcal{I}_{\alpha \beta}^{\mu \nu}+\mathcal{I}_{\beta \alpha}^{\mu \nu}\right) \quad \tau_{\alpha \beta}^{\mu \nu}=\tilde{\pi}^{\mu \nu} \delta_{\alpha \beta}
\end{aligned}
$$

transverse traceless sector

$\left\langle t^{\mu_{1} \nu_{1}}\left(p_{1}\right) t^{\mu_{2} \nu_{2}}\left(p_{2}\right) t^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle=\Pi_{1}^{\alpha_{1} \beta_{1}} \Pi_{2}^{\mu_{1} \nu_{1}}{ }_{\alpha_{2} \beta_{2}}^{\mu_{2} \nu_{2}} \Pi_{3}^{\alpha_{3} \beta_{3}}{ }_{\alpha_{3} \nu_{3}}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T^{\alpha_{2} \beta_{2}}\left(p_{2}\right) T^{\alpha_{3} \beta_{3}}\left(p_{3}\right)\right\rangle$
the intermediate steps are rather technical (ee BMS, "Implications of conformal symmetry in momentum space")

$$
\begin{array}{ll}
K_{13} A_{1}=0 & K_{23} A_{1}=0 \\
K_{13} A_{2}=8 A_{1} & K_{23} A_{2}=8 A_{1} \\
K_{13} A_{2}\left(p_{1} \leftrightarrow p_{3}\right)=-8 A_{1} & K_{23} A_{2}\left(p_{1} \leftrightarrow p_{3}\right)=0 \\
K_{13} A_{2}\left(p_{2} \leftrightarrow p_{3}\right)=0 & K_{23} A_{2}\left(p_{2} \leftrightarrow p_{3}\right)=-8 A_{1} \\
K_{13} A_{3}=2 A_{2} & K_{23} A_{3}=2 A_{2} \\
K_{13} A_{3}\left(p_{1} \leftrightarrow p_{3}\right)=-2 A_{2}\left(p_{1} \leftrightarrow p_{3}\right) & K_{23} A_{3}\left(p_{1} \leftrightarrow p_{3}\right)=0 \\
K_{13} A_{3}\left(p_{2} \leftrightarrow p_{3}\right)=0 & K_{23} A_{3}\left(p_{2} \leftrightarrow p_{3}\right)=-2 A_{2}\left(p_{2} \leftrightarrow p_{3}\right) \\
K_{13} A_{4}=-4 A_{2}\left(p_{2} \leftrightarrow p_{3}\right) & K_{23} A_{4}=-4 A_{2}\left(p_{1} \leftrightarrow p_{3}\right) \\
K_{13} A_{4}\left(p_{1} \leftrightarrow p_{3}\right)=4 A_{2}\left(p_{2} \leftrightarrow p_{3}\right) & K_{23} A_{4}\left(p_{1} \leftrightarrow p_{3}\right)=4 A_{2}\left(p_{2} \leftrightarrow p_{3}\right)-4 A_{2} \\
K_{13} A_{4}\left(p_{2} \leftrightarrow p_{3}\right)=4 A_{2}\left(p_{1} \leftrightarrow p_{3}\right)-4 A_{2} & K_{23} A_{4}\left(p_{2} \leftrightarrow p_{3}\right)=4 A_{2}\left(p_{1} \leftrightarrow p_{3}\right) \\
K_{13} A_{5}=2\left[A_{4}-A_{4}\left(p_{1} \leftrightarrow p_{3}\right)\right] & K_{23} A_{5}=2\left[A_{4}-A_{4}\left(p_{2} \leftrightarrow p_{3}\right)\right]
\end{array}
$$

and secondary WI's which connect 3- and 2-point functions
The primary can be solved in temrs of 3 K integrals and define a generalised hypergeometric system of Appell type for F4.

The generality of the BMS soluton, needs to be investigated from free field theory in order to explore whether the structure of the anomalous correlator is the one predicted from free field theory The free field theory approach is exactly equivalent to the general solutions since at d=4. TTT has 3 constants of Integration and there are 3 free field theories available for its representations.

Notice that the scaling dimension of T is fixed, equal to d .
THings would be different for arbitrary scalar operators

Drastic simplifications of the 3K Bessel functions integrals, in terms of standard perturbative master integrals

Phys.Lett.B 781 (2018) Maglio, CC
Renormalization, Conformal Ward Identities and the Origin of a
Conformal Anomaly Pole
Conformal field theory in momentum space and anomaly actions in gravity: The analysis of threeand four-point function

Maglio, CC, Phys. Reports 2022
4 point functions
Eur.Phys.J.C 80 (2020) 6, 540

- e-Print: 1912.01907

Maglio, Theofilopoulos, CC

The TJJ pole?

Also in this case the

$$
0=K_{23} A_{1}
$$ free feld theory can be

Compared with the
general BMS one

$$
\begin{aligned}
& 0=K_{13} A_{1} \\
& 0=K_{13} A_{2}+2 A_{1} \\
& 0=K_{13} A_{3}-4 A_{1} \\
& 0=K_{13} A_{3}\left(p_{2} \leftrightarrow p_{3}\right) \\
& 0=K_{13} A_{4}-2 A_{3}\left(p_{2} \leftrightarrow p_{3}\right)
\end{aligned}
$$

$$
0=K_{23} A_{2}
$$

$$
0=K_{23} A_{3}-4 A_{1}
$$

$$
0=K_{23} A_{3}\left(p_{2} \leftrightarrow p_{3}\right)+4 A_{1}
$$

$$
0=K_{23} A_{4}+2 A_{3}-2 A_{3}\left(p_{2} \leftrightarrow p_{3}\right)
$$

$$
\begin{aligned}
A_{1} & =4\left(F_{7}-F_{3}-F_{5}\right)-2 p_{2}^{2} F_{9}-2 p_{3}^{2} F_{10} \\
A_{2} & =2\left(p_{1}^{2}-p_{2}^{2}-p_{3}^{2}\right)\left(F_{7}-F_{5}-F_{3}\right)-4 p_{2}^{2} p_{3}^{2}\left(F_{6}-F_{8}+F_{4}\right)-2 F_{13} \\
A_{3} & =p_{3}^{2}\left(p_{1}^{2}-p_{2}^{2}-p_{3}^{2}\right) F_{10}-2 p_{2}^{2} p_{3}^{2} F_{12}-2 F_{13} \\
A_{3}\left(p_{2} \leftrightarrow p_{3}\right) & =p_{2}^{2}\left(p_{1}^{2}-p_{2}^{2}-p_{3}^{2}\right) F_{9}-2 p_{2}^{2} p_{3}^{2} F_{11}-2 F_{13} \\
A_{4} & =\left(p_{1}^{2}-p_{2}^{2}-p_{3}^{2}\right) F_{13}
\end{aligned}
$$

$$
\mathcal{S}_{A} \sim \beta(e) \int d^{4} x d^{4} y R^{(1)}(x)\left(\frac{1}{\square}\right)(x, y) F^{\mu \nu} F_{\mu \nu}(y),
$$

$$
\begin{gathered}
F_{1}=\frac{(d-4)}{p_{1}^{2}(d-1)}\left[F_{13}-p_{2}^{2} F_{3}-p_{3}^{2} F_{5}-p_{2} \cdot p_{3} F_{7}\right] \\
F_{2}=\frac{(d-4)}{p_{1}^{2}(d-1)}\left[p_{2}^{2} F_{4}+p_{3}^{2} F_{6}+p_{2} \cdot p_{3} F_{8}\right]
\end{gathered}
$$

F1 has a pole coming from the trace WI, while F2 does not

Anomalies and renormalization are connected. The result is a true nonlocal interaction

$$
\begin{aligned}
& \left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {poles }}= \\
& =\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3}\left\langle T\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(\text { perm. }) \\
& -\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3} \frac{\pi^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3}\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(\text { perm. }) \\
& +\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3} \frac{\pi^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3} \frac{\pi^{\mu_{3} \nu_{3}}\left(p_{2}\right)}{3}\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(\text { perm. }) \\
& -\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3} \frac{\pi^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3} \frac{\pi^{\mu_{3} \nu_{3}}\left(p_{3}\right)}{3} \frac{\pi^{\mu_{4} \nu_{4}}\left(p_{4}\right)}{3}\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T\left(p_{3}\right) T\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }} .
\end{aligned}
$$

Maglio, Theofilopoulos, CC

Figure 3 The Weyl-variant contributions from \mathcal{S}_{A} to the renormalized vertex for the 4 T with the corresponding bilinear mixings in $d=4$

$$
\begin{gathered}
\mathcal{S}_{A}=\int d^{4} x_{1} d^{4} x_{2}\left\langle T \cdot h\left(x_{1}\right) T \cdot h\left(x_{2}\right)\right\rangle+\int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3}\left\langle T \cdot h\left(x_{1}\right) T \cdot h\left(x_{2}\right) T \cdot h\left(x_{3}\right)\right\rangle_{\text {pole }} \\
+\int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} d^{4} x_{4}\left(\left\langle T \cdot h\left(x_{1}\right) T \cdot h\left(x_{2}\right) T \cdot h\left(x_{3}\right) T \cdot h\left(x_{4}\right)\right\rangle_{\text {pole }}+\right. \\
\left.+\left\langle T \cdot h\left(x_{1}\right) T \cdot h\left(x_{2}\right) T \cdot h\left(x_{3}\right) T \cdot h\left(x_{4}\right)\right\rangle_{o T}\right),
\end{gathered}
$$

Four-Point Functions of Gravitons and Conserved Currents of CFT in Momentum Space: Testing the Nonlocal Action with the TTJJ

$$
\begin{aligned}
\mathcal{S}_{\text {anom }}^{(2)} & =-\frac{\beta_{C}}{6} \int d^{4} x \int d^{4} x^{\prime}\left\{\left(\sqrt{-g} F^{2}\right)_{x}^{(1)}\left(\frac{1}{\square_{0}}\right)_{x x^{\prime}} R_{x^{\prime}}^{(1)}+F_{x}^{2}\left(\frac{1}{\square_{0}}\right)_{x x^{\prime}} R_{x^{\prime}}^{(2)}\right. \\
+\int d^{4} x^{\prime \prime}[& {\left[F_{x}^{2}\left(\frac{1}{\square_{0}}\right)_{x x^{\prime}}\left(\square_{1}\right)_{x^{\prime}}\left(\frac{1}{\square_{0}}\right)_{x^{\prime} x^{\prime \prime}} R_{x^{\prime \prime}}^{(1)}-\frac{1}{6} F_{x}^{2}\left(\frac{1}{\square_{0}}\right)_{x x^{\prime}} R_{x^{\prime}}^{(1)}\left(\frac{1}{\square_{0}}\right)_{x^{\prime} x^{\prime \prime}} R_{x^{\prime \prime}}^{(1)}\right.} \\
& \left.\left.+\frac{1}{3} R_{x}^{(1)}\left(\frac{1}{\square_{0}}\right)_{x x^{\prime}} F_{x^{\prime}}^{2}\left(\frac{1}{\square_{0}}\right)_{x^{\prime} x^{\prime \prime}} R_{x^{\prime \prime}}^{(1)}\right]\right\} .
\end{aligned}
$$

MAGLIO, TOMMASI, CC
EPJC 2023

$$
\mathcal{S}(g)=\mathcal{S}(\bar{g})+\sum_{n=1}^{\infty} \frac{1}{2^{n} n!} \int d^{d} x_{1} \ldots d^{d} x_{n} \sqrt{g_{1}} \ldots \sqrt{g_{n}}\left\langle T^{\mu_{1} \nu_{1}} \ldots T^{\mu_{n} \nu_{n}}\right\rangle_{\bar{g}} \delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right) \ldots \delta g_{\mu_{n} \nu_{n}}\left(x_{n}\right)
$$

Diagrammatically, for a scalar theory in a flat background, it takes the form

$$
\mathcal{S}_{A} \sim \int d^{4} x d^{4} y R^{(1)}(x)\left(\frac{1}{\square}\right)(x, y)\left(b^{\prime} E_{4}^{(2)}(y)+b\left(C^{2}\right)^{(2)}(y)\right), \quad \frac{1}{p^{2}} \hat{\pi}^{\mu \nu} \leftrightarrow R^{(1)} \frac{1}{\square}
$$

$$
\mathcal{Z}_{B}(g)=\mathcal{N} \int D \Phi e^{-S_{0}(g, \chi)},
$$

$$
e^{-\mathcal{S}_{B}(g)}=\mathcal{Z}_{B}(g) \leftrightarrow \mathcal{S}_{B}(g)=-\log \mathcal{Z}_{B}(g) .
$$

$$
\begin{gathered}
\mathcal{Z}_{R}(g)_{=} \mathcal{N} \int D \Phi e^{-S_{0}(g, \Phi)+b^{\prime} \frac{1}{\epsilon} V_{E}(g)+b \frac{1}{\epsilon} V_{C^{2}}(g)} \\
g_{\mu \nu}=e^{2 \phi(x)} \bar{g}_{\mu \nu} \\
\bar{g}_{\mu \nu}=e^{-2 \phi} g_{\mu \nu} \\
V_{E}^{\prime}=\left.\frac{\partial V_{E}(d)}{\partial d}\right|_{d=4} \quad V_{C^{2}}^{\prime}=\left.\frac{\partial V_{C^{2}}(d)}{\partial d}\right|_{d=4}
\end{gathered}
$$

$$
\begin{aligned}
V_{C^{2}}(d) & \equiv \mu^{\varepsilon} \int d^{d} x \sqrt{-g} C^{2} \\
V_{E}(d) & \equiv \mu^{\varepsilon} \int d^{d} x \sqrt{-g} E
\end{aligned}
$$

$$
V_{E}=4 \pi \chi(\mathcal{M})
$$

Dilaton explicit in the effective action

$$
\mathcal{S}_{R} \equiv \mathcal{S}_{R}(4)=\mathcal{S}_{f}(4)+V_{E}^{\prime}(4)+V_{C^{2}}^{\prime}(4) .
$$

RECENT Proposal

Evading Lovelock's theorem by a renormalization of the coupling (Glavan and Lin; R. Mann et al)

$$
\begin{gathered}
\mathcal{S}_{E G B}=\mathcal{S}_{E H}+\mathcal{S}_{G B}(d) \quad \mathcal{S}_{G B}(d)=\frac{\alpha}{\epsilon} V_{E}(d) \\
\frac{1}{\kappa}\left(R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda_{0} g_{\mu \nu}\right)+\alpha\left(V_{E}(d)\right)_{\mu \nu}=0 \\
\mathcal{S}_{G B}^{(W Z)}=\alpha \int d^{4} x \sqrt{\bar{g}}\left[\phi \bar{E}-\left(4 \bar{G}^{\mu \nu}\left(\bar{\nabla}_{\mu} \phi \bar{\nabla}_{\nu} \phi\right) \quad\right. \text { This action is quartic }\right. \\
\left.\left.+2\left(\bar{\nabla}_{\lambda} \phi \bar{\nabla}^{\lambda} \phi\right)^{2}+4 \bar{\square} \phi \bar{\nabla}_{\lambda} \phi \bar{\nabla}^{\lambda} \phi\right)\right]
\end{gathered}
$$

Can we remove the dilaton?

In DR this is possible by a finite renormalization of the E counterterm

$$
\mathcal{S}_{E G B}=S_{E H}+\alpha V_{E},
$$

$$
E_{\text {ext }}=E+\frac{\epsilon}{2(d-1)^{2}} R^{2}
$$

Several papers, R. Mann et al, Glavan and Lin PRL

$$
\delta_{\sigma} \mathcal{S}=\frac{1}{(4 \pi)^{2}} \int d^{4} x \sqrt{g} \sigma\left(b_{1} C_{\mu \nu \rho \sigma}^{(4)} C^{(4) \mu \nu \rho \sigma}+b_{2} E_{4}+b_{3} \square R\right)
$$

$$
\begin{align*}
& \mathcal{S}_{\mathrm{anom}}^{(3)}=\frac{1}{9} \int d^{4} x \int d^{4} x^{\prime} \int d^{4} x^{\prime \prime}\left\{\left(\partial_{\mu} R^{(1)}\right)_{x}\left(\frac{1}{\bar{\square}}\right)_{x x^{\prime}}\left(R^{(1) \mu \nu}-\frac{1}{3} \eta^{\mu \nu} R^{(1)}\right)_{x^{\prime}}\left(\frac{1}{\bar{\square}}\right)_{x^{\prime} x^{\prime \prime}}\left(\partial_{\nu} R^{(1)}\right)_{x^{\prime \prime}}\right\} \\
& -\frac{1}{6} \int d^{4} x \int d^{4} x^{\prime}\left(E^{(2)}\right)_{x}\left(\frac{1}{\bar{\square}}\right)_{x x^{\prime}} R_{x^{\prime}}^{(1)}+\frac{1}{18} \int d^{4} x R^{(1)}\left(2 R^{(2)}+(\sqrt{-g})^{(1)} R^{(1)}\right)
\end{align*}
$$

$$
\mathcal{S}_{\mathrm{anom}}^{N L}[g]=\frac{1}{4} \int d^{4} x \sqrt{-g_{x}}\left(E-\frac{2}{3} \square R\right)_{x} \int d^{4} x^{\prime} \sqrt{-g_{x^{\prime}}} D_{4}\left(x, x^{\prime}\right)\left[\frac{b^{\prime}}{2}\left(E-\frac{2}{3} \square R\right)+b C^{2}\right]_{x^{\prime}}
$$

$$
\Delta_{4} \equiv \square^{2}+2 R^{\mu \nu} \nabla_{\mu} \nabla_{\nu}-\frac{2}{3} R \square+\frac{1}{3}\left(\nabla^{\mu} R\right) \nabla_{\mu}
$$

Conclusions

The breaking of conformal symmetry is associated to the the propagation of massless effective states in the effective action.

For chiral anomalies, the interactions can be reconstructed by a combination of the Anomaly pole + CWIs. We have shown it in the case of the AVV, for the J5TT (work in preparation)

For parity breaking trace/conformal anomalies, we have also shown that the reconstruction can also be based entirely on the selection of an anomaly pole to solve the CWIs.

We have used the TTJJ correlator to show that the anomaly induced actions either in the Riegert form or in the Fradkin-Vilkovisky form miss crucial Weyl invariant terms in order to be consistent with the CWIs and identified such terms

Applicatons

Condensed Matter theory: application of this class of nonlocal actions in the context of topological Materials (via Luttinger formula)

THANKS FOR THE INVITATION and for YOUR ATTENTION

