Streaming DAQ - Computing Discussion

Few slides to kick start the discussion, please interrupt to discuss at any moment

Marco Battaglieri (Jefferson Lab), Markus Diefenthaler (Jlab), Jin Huang (BNL), Jeff Landgraf (BNL), Torre Wenaus (BNL)

Quick recap in Streaming Computing WG

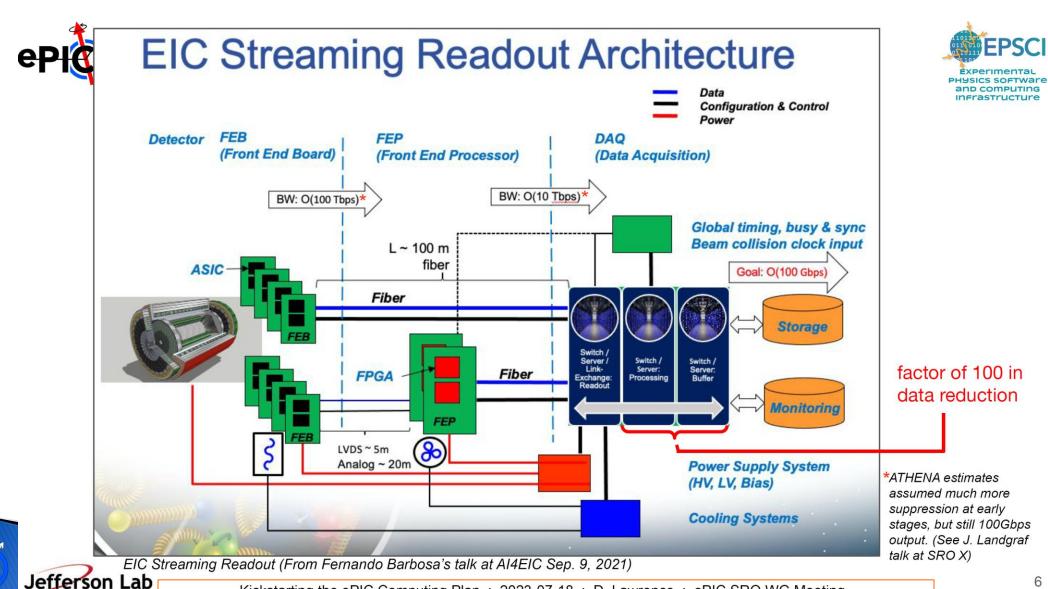
▶ SRO WG meetings was kickstarted in July 2023, started with overview

discussions (July 11 & 18)

- Aug meetings
 - Data rate
 - Open-minded discussion on streaming computing model
 - Concluded a list of follow up discussions

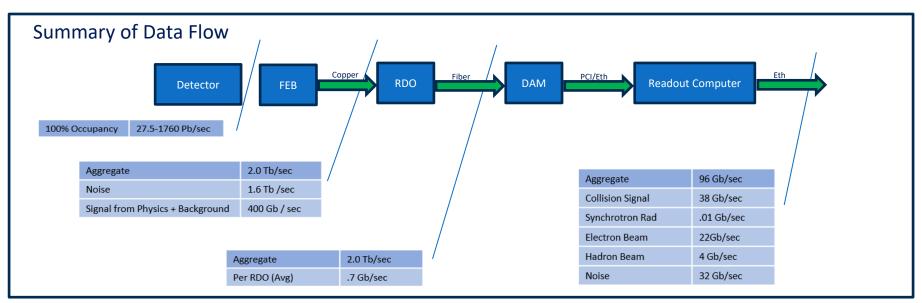
Discussions:

- 1. We need to define the interface between the streaming DAQ and the streaming computing.
- 2. What are the requirements for autonomous calibration of the ePIC detectors? What is the latency for doing this?
- 3. What is the algorithmic workflow for a holistic reconstruction of physics events?
- 4. Specific requirements for Echelon 1. Failback modes.
- 5. What is the raw data that we will keep?
- 6. What use cases for physics analyses to discuss in detail?
- Less critical: We need to define the data model and requirements for the data format. Feedback system.
- 8. Less critical: How many passes will be needed?
- Sept 14 meeting on Item-1 DAQ-Computing interface
- Coming:
 - Consensus forming for streaming computing model
 - Preparation towards ePIC computing review in Oct 2023

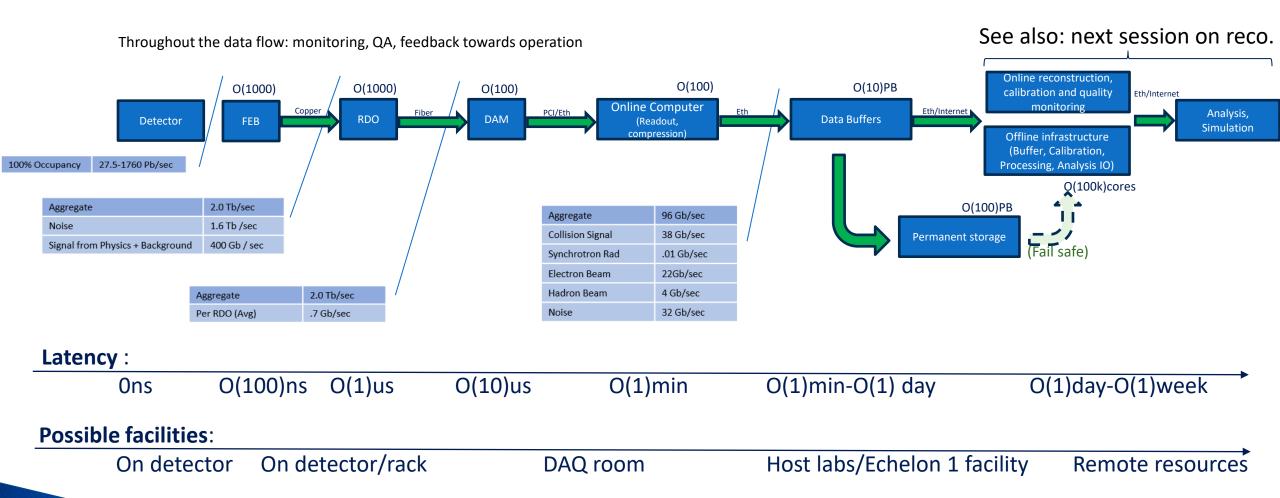


Why streaming DAQ/computing?

	EIC	RHIC	LHC → HL-LHC	
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$	
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV	
Bunch spacing	10 ns	100 ns	25 ns	
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \text{cm}^{-2} \text{s}^{-1}$	
x-N cross section	50 μb	40 mb	80 mb	
Top collision rate	500 kHz	10 MHz	1-6 GHz	
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6	
Charged particle rate	4M N _{ch} /s	60M N _{ch} /s	30G+ N _{ch} /s	


- ► Events are precious and have diverse topology → hard to trigger on all process
- ▶ Signal data rate is moderate → possible to streaming recording all collision signal, event selection in offline reconstruction using all detector information after calibration
- ▶ Background and systematic control is crucial → avoiding a trigger bias; reliable data reduction

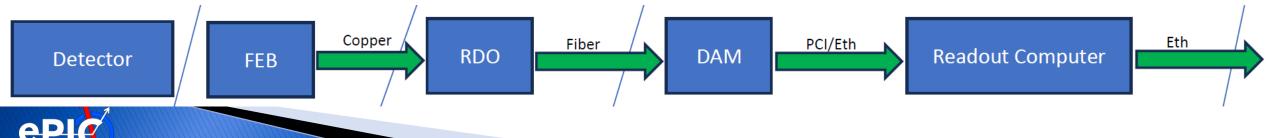
Streaming DAQ has been selected for EIC since YR and preCDR time



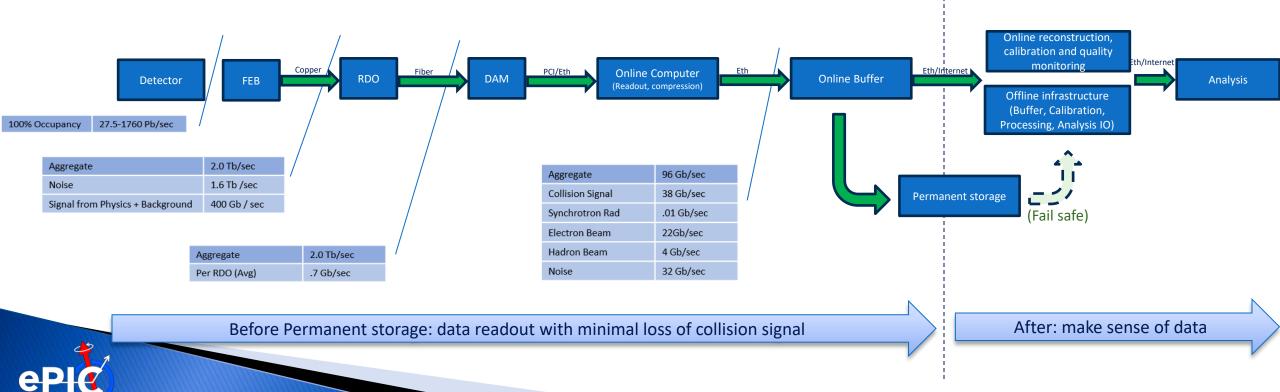
By Jeff Landgraf, presented on Aug 22 WG meeting [link], Updated Sept 19

Detector	Channels					RDO	Fiber	DAM	Data	Data
Group	MAPS	AC-LGAD	SiPM/PMT	MPGD	HRPPD				Volume (RDO) (Gb/s)	Volume (To Tape) (Gb/s)
Tracking (MAPS)	36B					400	800	17	26	26
Tracking (MPGD)				202k		118	236	5	1	1
Calorimeters	500M		104k			451	1132	19	502	28
Far Forward	300M	2.6M	170k			178	492	8	15	8
Far Backward	82M		2k			50	100	4	150	1
PID (TOF)		7.8M				500	1500	17	31	1
PID Cherenkov			320k		140k	1283	2566	30	1275	32
TOTAL	36.9B	10.4M	596k	202k	140k	2980	6826	100	2,000	96

ePIC streaming computing: follow the data & zoom out



ECCE computing plan, Nucl. Instrum. Meth. A 1047 (2023) 167859


Streaming DAQ – Computing: consideration 1 For kickstart the discussion, please interrupt to discuss at any moment

- Streaming DAQ naturally leads to no clear separation of streaming DAQ and computing
 - Streaming DAQ relies on data reduction computationally (i.e. no real-time triggering) → Any data reduction in streaming DAQ is a computing job
 - Which could be done at ASIC, FPGA, online-computers
 - Example could be zero-suppression (simple or sophisticated), feature extraction (e.g. amplitude in calo and tracklet in FB tracker)
 - Require minimal loss of collision signal; any data reduction require stringent bias control/study
- Citing ePIC software principles https://eic.github.io/activities/principles.html :
 We will have an unprecedented compute-detector integration:
 - We will have a common software stack for online and offline software, including the processing of streamed data and its time-ordered structure.
 - We aim for autonomous alignment and calibration.
 - We aim for a rapid, near-real-time turnaround of the raw data to online and offline productions.

Streaming DAQ – Computing: consideration 2 For kickstart the discussion, please interrupt to discuss at any moment

- Sooner or later, a copy of data is stored and saved for permanent storage
- ▶ This stage of first permanent storage could be viewed as a DAQ computing boundary

Streaming DAQ – Computing: consideration 2 For kickstart the discussion, please interrupt to discuss at any moment

- Paid by project
- Has a hard archival limit (O(100Gbps)) from both throughput and tape cost
- Main goal on "online-computing" is data reduction to fit output pipeline
- Stringent quality and bias control for any lossydata reduction
- As minimal reduction as affordable to
 - (1) reduce unrecoverable systematic uncertainty
 - (2) reduce complexity, cost, failure modes.
 - Any processing beyond minimal need a physics motivation to justify project cost/schedule reviews (and possible descope reviews)
- ► High availability: any down time cost $$O(0.1)M/day \rightarrow usually on host lab$

- Driven by collaboration, operation fund
- We would like to complete within a small latency (<O(1)week)
 - Usually driven by calibration and debugs
- Main goal on "offline-computing" is to bring out physics objects for analysis
- Quality control for reconstruction
- Can afford to redo reconstruction if new algorithm or with new physics insights (at cost of time, effort and computing)
- Can wait for short interruptions and can be distributed

Before permanent archival: DAQ

After permanent archival: Computing

(last session today)

Towards the computing review: the charge

- 1. At this stage, approximately ten years prior to data collection, is there a comprehensive and cost-effective long-term plan for the software and computing of the experiment?
- 2. Are the plans for integrating international partners' contributions adequate at this stage of the project?
- 3. Are the plans for software and computing integrated with the HEP/NP community developments, especially given data taking in ten years?
- 4. Are the resources for software and computing sufficient to deliver the detector conceptional and technical design reports?
- 5. Are the ECSJI plans to integrate into the software and computing plans of the experiment sufficient?

Please continue the discussions

Feel free to share your views Live note on indico [link]

EPIC Detector Scale and Technology Summary:

Detector System	Channels	RDO	Gb/s (RDO)	Gb/s (Tape)	DAM Boards	Readout Technology	Notes
Si Tracking: 3 vertex layers, 2 sagitta layers, 5 backward disks, 5 forward disks	7 m^2 36B pixels 5,200 MAPS sensors	400	26	26	17	MAPS: Several flavors: curved its-3 sensors for vertex Its-2 staves / w improvements	Fiber count limited by Artix Transceivers
MPGD tracking: Electron Endcap Hadron Endcap Inner Barrel Outer Barrel	16k 16k 30k 140k	8 8 30 72	1	.2	5	uRWELL / SALSA uRWELL / SALSA MicroMegas / SALSA uRWELL / SALSA	64 Channels/Salsa, up to 8 Salsa / FEB&RDO 256 ch/FEB for MM 512 ch/FEB for uRWELL
Forward Calorimeters: LFHCAL HCAL insert* ECAL W/SciFi Barrel Calorimeters: HCAL ECAL SciFi/PB ECAL ASTROPIX Backward Calorimeters: NHCAL ECAL (PWO)	63,280 8k 16,000 7680 5,760 500M pixels 3,256 2852	74 9 64 9 32 230 18 12	502	28	19	SiPM / HG2CROC SiPM / HG2CROC SiPM / Discrete SiPM / HG2CROC SiPM / HG2CROC Astropix SiPM / HG2CROC SiPM / Discrete	Assume HGCROC 56 ch * 16 ASIC/RDO = 896 ch/RDO 32 ch/FEB, 16 FEB/RDO estimate, 8 FEB/RDO conserve. HCAL 1536x5 *HCAL insert not in baseline Assume similar structure to its-2 but with sensors with 250k pixels for RDO calculation. 24 ch/feb, 8 RDO estimate, 23 RDO conservative
Far Forward: B0: 3 MAPS layers 1 or 2 AC-LGAD layer 2 Roman Pots 2 Off Momentum ZDC: Crystal Calorimeter 32 Silicon pad layer 4 silicon pixel layers 2 boxes scintillator	300M pixel 1M 1M (4 x 135k layers x 2 dets) 640k (4 x 80k layers x 2 dets) 400 11,520 160k 72	10 30 64 42 10 10 10	15	8	8	MAPS AC-LGAG / EICROC AC-LGAD / EICROC AC-LGAD / EICROC APD HGCROC as per ALICE FoCal-E	3x20cmx20cm 600^cm layers (1 or 2 layers) 13 x 26cm layers 9.6 x 22.4cm layers There are alternatives for AC-LGAD using MAPS and low channel count DC-LGAD timing layers
Far Backward: Low Q Tagger 1 Low Q Tagger 2 Low Q Tagger 1+2 Cal 2 x Lumi PS Calorimeter Lumi PS tracker	1.3M pixels 480k pixels 700 1425/75 80M pixels	12 12 1 1 24	150	1	4	Timepix4 Timepix4 (SiPM/HG2CROC) / (PMT/FLASH) Timepix4	
PID-TOF: Barrel Endcap	2.2M 5.6 M	288 212	31	1	17	AC-LGAD / EICROC (strip) AC-LGAD / EICROC (pixel)	bTOF 128 ch/ASIC, 64 ASIC/RDO eTOF 1024 pixel/ASIC, 24-48 ASIC/RDO (41 ave)
PID-Cherenkov: dRICH pfRICH DIRC	317,952 69,632 69,632	1242 17 24	1240 24 11	13.5 12.5 6	28 1 1	SiPM / ALCOR HRPPD / EICROC (strip or pixel) HRPPD / EICROC (strip or pixel)	Worse case after radiation. Includes 30% timing window. Requires further data volume reduction software trigger