
Validation Status and Roadmap

Dmitry Kalinkin

University of Kentucky

09/20/2023
1

Key components

» Development tests for epic
geometry and for EICrecon

» Detector benchmarks

» Physics benchmarks

required contribution,
strict standards,
early feedback
low statistics

voluntary contribution,
relaxed standards,
late feedback,
large statistics

2

epic geometry tests

https://github.com/eic/epic/pulls

» Compile with gcc and clang

» Run TGeo and Geant4 overlap
checks for all configurations

» Run ACTS checks

» Produce GDML, ROOT(TGeo)
geometry files

» Render dawn views

» Trigger running of detector and
physics benchmarks on eicweb,
status is reported back

3

https://github.com/eic/epic/pulls

epic geometry tests

https://github.com/eic/epic/pulls

» Compile with gcc and clang

» Run TGeo and Geant4 overlap
checks for all configurations

» Run ACTS checks

» Produce GDML, ROOT(TGeo)
geometry files

» Render dawn views

» Trigger running of detector and
physics benchmarks on eicweb,
status is reported back

3

https://github.com/eic/epic/pulls

EICrecon tests

https://github.com/eic/EICrecon/pulls
» Compile with gcc and clang

» Static analysis and code style
(clang-tidy, IWYU)

» With AddressSanitizer and
UBSanitizer

» Run unit tests

» Run simulation and reconstruction
for gun and DIS (100 events)

» Run JANA-based benchmarks

» Upload artifacts (EDM4hep sim,
EDM4eic reco, jana factory
parameters, janadot, coverage
report, doxygen)

» Compare to reco EDM4eic to
artifact from the base branch

4

https://github.com/eic/EICrecon/pulls

EICrecon tests

https://github.com/eic/epic-capybara/
blob/main/bara.py

Crude script (uproot+DeepDiff), but a huge help!

» Compile with gcc and clang

» Static analysis and code style
(clang-tidy, IWYU)

» With AddressSanitizer and
UBSanitizer

» Run unit tests

» Run simulation and reconstruction
for gun and DIS (100 events)

» Run JANA-based benchmarks

» Upload artifacts (EDM4hep sim,
EDM4eic reco, jana factory
parameters, janadot, coverage
report, doxygen)

» Compare to reco EDM4eic to
artifact from the base branch

4

https://github.com/eic/epic-capybara/blob/main/bara.py
https://github.com/eic/epic-capybara/blob/main/bara.py

epic-capybara

Experimental set of tools to:

» Download GitHub artifacts

» Compare PODIO files

» Visualize comparisons
(Each branch histogrammed)

» Share (upload to GitHub pages)

Rather not have to
develop/maintain those ourselves…

https://github.com/eic/epic-capybara

Demo: regression in 23.08 campaign due to
incorrect introduction of thresholds
https://veprbl.github.io/capybara-reports/

5

https://github.com/eic/epic-capybara
https://veprbl.github.io/capybara-reports/

EICrecon-specific tasks

□ Full unit test coverage for algorithms
□ Implement mock geometry services
□ Test cases for tracking
□ Test cases for calorimetry
□ Test cases for PID
□ Test cases for event-level reconstruction

□ Check for some invariants (e.g units rescaling, compiler switching)

6

Common benchmarking tasks

» Benchmark codes
□ Adopt a workflow execution system

(Local execution, Caching, Input requirements spec)
□ Adopt a (non-graphic) output format for histograms/profiles
□ Support re-running with non-standard software dependency versions

(What is the effect of bumping DD4hep version?)
□ Aggregation of historical data

(Software and key detector performance metrics)
□ Tool for presentation/comparisons of benchmark results (like “rivet-mkhtml” and

like “mlflow”)
(See also talk by Torri)
□ UI to explore and select available samples (time series, commit series,

dependency version series)
□ UI for presentation of comparisons between two samples
□ UI for presentation of summaries along many samples

7

Tasks for detector benchmarks

» Items from the “common” list
□ Implement a reference benchmark code
□ Generate artifacts to keep reconstruction up to date:

□ Up to date calibrations for calorimeters
□ Tracking material map
□ Reproducible ML artifacts

(e.g. far-backward and far-forward tracking, AstroPix PID)
□ Implement simple pass/fail conditions for geometry development

8

New physics benchmarks
After call to PWGs we’ve received two new cool benchmarks. Now running on
eicweb.

Diffractive vector meson production in pAu

0 0.05 0.1 0.15

)2 | (GeVt|

1−10

1

10

210

310

410

510

)
-2

 |
(G

eV
t

dN
/d

|

eAu 18x110 GeV

, 0.01 < y < 0.952<10 GeV21<Q

| < 0.02 GeVφ M−
inv

|<3.5, |M
φ

 |y

-
K+ K→ φ

 MC φSartre
 RECO w. EEMC φSartre

0 0.05 0.1 0.15 0.2

)2 | (GeVt|

2−10

1−10

1

10

210

310

 t/
t (

re
so

lu
tio

n)

δ

eAu 18x110 GeV

-
K+ K→ φ

0 0.05 0.1 0.15 0.2

MC

10−

5−

0

 r
es

ol
ut

io
n

2−10

1−10

1

Jet benchmarks (here for DIS 18 × 275, 𝑄2 > 100 GeV2)

9

Tasks for physics benchmarks

» Items from the “common” list
□ Implement map/reduce steps to enable big data (campaign processing)
□ Implement a reference benchmark code

Things make take a turn towards accepting benchmarks of semi-arbitray format.
Almost like providing Reana-like service.

□ Submit eicweb pipelines from the EICrecon repo
□ Automation for running over the campaign

10

Volunteered benchmarks

People like to contibute their code where there is foot traffic
» fhcal_studiesProcessor in EICrecon ≈ 1000 LoC
Ran within the reconstruction, if we can’t access all necessary structures to
analyze the data, it’s an issue with our EDM

» Plot_eta.C, draw_Performance.C, draw_hits.C in EICrecon

» https://github.com/eic/epic/blob/main/scripts/subdetector_tests/
material_scan.py

11

https://github.com/eic/EICrecon/blob/main/src/benchmarks/reconstruction/lfhcal_studies/
https://github.com/eic/EICrecon/blob/main/src/benchmarks/reconstruction/tracking_efficiency/scripts/Plot_eta.C
https://github.com/eic/EICrecon/blob/main/src/benchmarks/reconstruction/tracking_efficiency/scripts/draw_Performance.C
https://github.com/eic/EICrecon/blob/ba06eab5ed51727cb0410b8da1451759656f3720/src/benchmarks/reconstruction/tracking_efficiency/scripts/draw_hits.C
https://github.com/eic/epic/blob/main/scripts/subdetector_tests/material_scan.py
https://github.com/eic/epic/blob/main/scripts/subdetector_tests/material_scan.py

Desired properties

» Practical applications
– inflicting good upon the world
– aid in software change review process
– for data analyzers by data analyzers

» Campaign readiness at all times
– reduce monthly crunch time
– avoid buggy productions

» Shared infrastructure
– embrace contributions from the collaboration at large
– common resources: GitHub runners, OSG

» Minimal development for tooling
– doing things in-house has shortcomings
– pressing schedule to deliver
– existing solutions to reuse?

12

Conclusions

» Big progress with fast CI validation for epic and EICrecon
» Some decisions still need to be made to get benchmarks “ready for production”
» Infrastructure needs to mature fast
…for us to effectively direct the emerging efforts towards the consolidated
benchmarking

13

Backup

14

ePIC benchmarks on eicweb

ePIC had inherited benchmarks from Athena:
» https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
» https://eicweb.phy.anl.gov/EIC/benchmarks/physics_benchmarks
» https://eicweb.phy.anl.gov/EIC/benchmarks/reconstruction_benchmarks
Something to learn from!
» Running on the grid after each software change (Continious Integration)
» Transparent procedures – source code available
» Unfortunately, analysis and interface are unsophisticated
» Not friendly to deadline-driven development - no user adoption

15

https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
https://eicweb.phy.anl.gov/EIC/benchmarks/physics_benchmarks
https://eicweb.phy.anl.gov/EIC/benchmarks/reconstruction_benchmarks

b0_tracker
+-- analysis
| +-- b0_tracker_hits.cxx
+-- scripts

+-- gen_forward_protons.cxx
barrel_ecal/scripts

+-- emcal_barrel_energy_scan_analysis.cxx
+-- emcal_barrel_particles_analysis.cxx
+-- emcal_barrel_pi0_analysis.cxx
+-- emcal_barrel_pion_rejection_analysis.cxx
+-- emcal_barrel_pions_analysis.cxx

barrel_hcal/scripts
+-- hcal_barrel_energy_scan_analysis.cxx
+-- hcal_barrel_particles_analysis.cxx

material_maps
+-- scripts
others
+-- materialScanEta.cxx
+-- materialScanEtaPhi.cxx
pid/scripts

+-- drich_analysis.cxx // INCOMPLETE
+-- mrich_analysis.cxx // INCOMPLETE

timing
tracking_detectors
+-- analysis
| +-- sim_track_hits.cxx
+-- scripts

+-- test_matscan.cxx
+-- matscan_plot.py

zdc
+-- scripts
| +-- analysis_zdc_particles.cxx
+-- simple_checking.cxx
+-- simple_info_plot_histograms.cxx
+-- zdc_neutrons_reader.cxx

backgrounds
+-- analysis

+-- synchrotron_raw.cxx // EMPTY
+-- synchrotron_sim.cxx // NO OUTPUT

diffractive_vm
+-- analysis

+-- diffractive_vm.cxx // NEW
dis
+-- analysis
| +-- dis_electrons.cxx
 +-- jets.cxx // NEW

+-- kinematics_correlations.py
+-- truth_reconstruction.py

dvcs
+-- analysis

+-- dvcs_ps_gen.cxx
+-- dvcs_tests.cxx

dvmp
+-- analysis
| +-- vm_invar.cxx
| +-- vm_mass.cxx
single
+-- analysis

+-- analyze.cxx
tcs
+-- analysis

+-- tcs_tests.cxx
u_omega
+-- analysis

+-- demo.cxx // INCOMPLETE

16

	Backup

