Radiation environment in inner vertex detectors

Sonny Fecanin

2/8/2023

1

Progress

- e-p collisions and proton beam gas simulations have been conducted—these are the main contributions to radiation
 - Contributions due to electron beam gas events and synchrotron radiation will also be looked at.
- We still need to conduct ep collision simulations with all proper parameters which
 - Account for lower energy particles
 - Account for 25 mrad beam crossing angle
- Code for analysis of the data is complete

Running scheme

- EIC runs max 26 weeks/yr at max luminosity
- Values reported on the following slides are for one run period (1 yr)
- Energies, luminosities, and rates of the various sources of radiation:

Collision type	Rate	Energy	Luminosity
Electron-proton	500 kHz	10x275 GeV	$1e34 \text{ cm}^{-2}\text{s}^{-1}$
Proton beam-gas	35kHz	275 GeV	
Electron beam-gas	3.2MHz	10 GeV	
Synchrotron rad.	10MHz		

Calculating Fluence

- Path Length method
 - Assume straight path only accurate for uncharged
 - Used for neutron fluence
- Spherical method

Fluence in vertex detectors for 6mo. running full time

Calculating Fluence

- Path Length method
 - Assume straight path only accurate for uncharged
 - Used for neutron fluence
- Spherical method
- Detector hits output
 - Only reports detected particles
 - Used for proton and charged hadron fluence

Fluence in vertex detectors for 6mo. running full time

Comparison to EIC wiki

- EIC wiki calculation of fluence
- EIC wiki resolution is poor, but using the path length method to find fluence at the top and bottom of the bins does in fact bind the values reported by the wiki

Fluence in vertex detectors for 6mo. running full time

Calculating flux using MCParticles output

Circular flux

Cylindrical flux

Hadron (cylindrical) flux

Flux using VertexBarrelHits output and EIC wiki

- EIC wiki uses the same method as fluence to find flux; therefore our results aren't comparable to theirs.
- Flux through detectors using VBH:
 - dependent on particle hits, so particles may be counted multiple times

Flux due to ep	<i>'</i> //////,	Charged particle flux		Charged I	nadron flux	Proton flux	
collisions in	Detector	VBH	Cylind	VBH	Cylind	VBH	Cylind
Hz/cm ²	Inner	1724	1349	1588	1322	67.95	63.86
	Middle	1164	845.5	1019	825.2	45.4	42.98
	Outer	277.3	166.0	237.5	160.1	11.30	11.30

VBH = particle counts in VertexBarrelHits output

Cylind = MC particles count using cylindrical method to find flux

Flux using VertexBarrelHits output and EIC wiki

- EIC wiki uses the same method as fluence to find flux; therefore our results aren't comparable to theirs.
- Flux through detectors using VBH:
 - dependent on particle hits, so particles may be counted multiple times

Flux due to	<i>'</i> //////,	Charged particle flux		Charged hadron flux		Proton flux	
proton beam gas	Detector	VBH	Cylind	VBH	Cylind	VBH	Cylind
interactions in Hz/cm ²	Inner	218.2	26.25	20.46	15.47	2.464	2.292
	Middle	175.5	18.27	17.11	11.86	4.212	2.149
	Outer	34.18	5.639	5.622	4.333	1.032	0.774

VBH = particle counts in VertexBarrelHits output

Cylind = MC particles count using cylindrical method to find flux

Dose Calculations

- Detector hits simulation output
- EIC wiki dose: charged hadron dose for ep collisions (in rad)

10³ ^{off} 10² ^{off} 10 10 10 10 10⁻¹ 10⁻¹ 10⁻² 10⁻³ Middle 10⁻⁴

Comparison between VertexBarrelHits output and charged hadron dose reported on EIC wiki

<i>'</i> //////,	e-p col	lisions	Beam-gas events		
Detector	VBH	wiki	VBH	wiki	
Inner	1498	788	102.6	22.5	
Middle	808.4	661	77.9	32.0	
Outer	172.7	84.6	16.6	9.16	

All doses are reported in rad

Radiation info on EIC wiki: <u>Radiation Doses - Electron-Proton/Ion Collider Experiment (bnl.gov)</u>

30

40

z (cm)

50

50 E

45

40

35

30

25

20

15

10

EIC vs ALICE dimensions

- ALICE assumes a 10 year runtime
- The dimensions of the three innermost detectors in ALICE and EIC are shown below
 - All dimensions are in mm

ALICE inner detector dimensions

Detector	Inner radius	Outer radius	Min z	Max z
SPD1	39	39.71	-165	165
SPD2	76	76.71	-165	165
SDD1	140	140.75	-222	222

EIC inner detector dimensions

Detector	Inner radius	Outer radius	Min z	Max z
Inner vertex	35.98	36.02	-135	135
Middle vertex	47.98	48.02	-135	135
Outer vertex	119.98	120.02	-135	135

A. Morsch and B. Pastircak ALICE Internal Note 2002-28. "Radiation in ALICE detectors and electron racks"

Fluence comparison to ALICE

- There are many lower energy neutrons floating around -- our simulation discards those with Ekin<10MeV
- Greater proportion of EIC fluence is due to beam-gas compared to ALICE

Total neutrons - data is a combination of our simulation outputs and EIC wiki info

ALICE Fluence (/cm^2) EIC Fluence (/cm^2) ALICE/EIC ratio

Detector	IP collisions	Beam-gas	Total	IP collisions	Beam-gas	Total	IP collisions	Beam-gas	Total
Inner	8e11	1.8e10	8.5e11	6.84e10	1.41e10	8.25e10	11.7	1.28	10.3
Middle	5.6e11	1.4e10	6.0e11	5.32e10	1.36e10	6.60e10	10.7	1.03	9.1
Outer	4.5e11	1.4e10	4.9e11	4.39e10	1.22e10	5.61e10	10.3	1.15	8.7

Fluence comparison to ALICE

- There are many lower energy neutrons floating around -- our simulation discards those with Ekin<10MeV
- Greater proportion of EIC fluence is due to beam-gas compared to ALICE
- Overall, fluence seems to be 10% that of ALICE

Special fluence - data is solely from our simulation output

ALICE Fluence (/cm^2) EIC Fluence (/cm^2) ALICE/EIC ratio

Detector	>20MeV n	Charged hadrons	>20MeV n	Charged hadrons	>20MeV n	Charged hadrons
Inner	3.4e11	4.0e12	2.33e10	5.00e11	14.59	8.00
Middle	1.4e11	1.2e12	1.33e10	2.82e11	9.52	4.26
Outer	3.7e11	3.8e11	2.02e9	4.97e10	18.32	7.65

Flux comparison to ALICE

- ALICE report doesn't include much about fluxes, other than a histogram of the circle-method flux at the tunnel entrance.
 - The highest flux at the tunnel entrance was reported to be 10^5 Hz/cm²
 - The most significant contribution to hadron flux was from charged hadrons.

Flux comparison to ALICE

- ALICE report doesn't include much about fluxes, other than a histogram of the circle-method flux at the tunnel entrance.
 - The highest flux at the tunnel entrance was reported to be 10^5 Hz/cm²
 - The most significant contribution to hadron flux was from charged hadrons.
- High flux may be significant in detector occupancies

Flux comparison to ALICE

ALICE hadron flux at some z value

• EIC max flux seems to be the same order of magnitude as ALICE

EIC simulation hadron flux

Dose comparison to ALICE

ALICE dose (Gy) EIC dose (Gy) ALICE/EIC ratio

Detector	IP collisions	Beam-gas	Total	IP collisions	Beam-gas	Total	IP collisions	Beam-gas	Total
Inner	2000	250	2750	205.2	47.8	253.0	9.75	5.23	10.9
Middle	510	48	680	124.2	34.8	159.0	4.11	1.38	4.28
Outer	190	12	250	27.4	5.5	32.8	6.93	2.18	7.62

- Dose is approx. 15% that of ALICE
- Dose contributions from beam-gas events are more significant in EIC than ALICE
 - 20% of total dose in EIC is from beam-gas contributions
 - This data does not account for electron beam-gas events in EIC

Summary of tentative results

- Overall radiation in the innermost (vertex) detectors of EIC for a 10 year period can be expected to only be 10% - 15% that of the innermost detectors of ALICE
- Beam-gas events are a more significant part of radiation in EIC as compared to ALICE, but still only ~20-25% of the total radiation
- Simulations are still being run, and eventually electron beam-gas events and synchrotron radiation will also be accounted for in the EIC radiation results.

References

• Radiation Doses information on EIC wiki

https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses

• ALICE radiation report: A. Morsch and B. Pastircak, ALICE Internal Note 2002-28. "Radiation in ALICE detectors and electron racks"