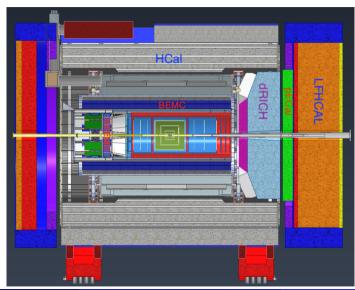
Heavy-flavor jet identification at forward direction of ePIC

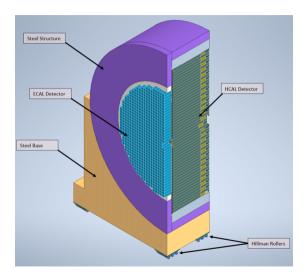

Zhongling Ji and Nihal Gozlukluoglu

UCLA California EIC Consortium Collaboration Meeting

August 21, 2023

ePIC detector

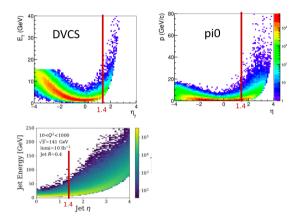
Zhongling & Nihal (UCLA)


Heavy-flavor jet identification at forward direction of ePIC

2/10

Forward ECal (pECal) designs

- Sampling ECal:
 - Measure photons and hadrons at the forward region.
 - Good energy resolution $[(10-12)\%/\sqrt{E} \oplus (1-3)\%]$.
- pECal with W/ScFi structure:
 - Beehive with fibers of radius 0.235 mm.
 - Absorber: 97% Tungsten + 3% epoxy.
 - Fiber: 100% polystyrene.

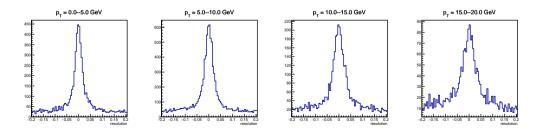


Radius: R_{in} = 14 cm, R_{out} = 173 cm. Integration length along z-axis: 30 cm.

• η coverage: 1.4 to 4.

- Total weight: \sim 20 tons.
- $\bullet\,$ Number of readout channels: ${\sim}15k.$
- Readout must work in magnetic field, neutron fluxes up to 10^{12} n/cm^2 .
- Fit in limited space (small X0).
- $\bullet\,$ Hadron compensation with e/h ratio ${\sim}1.$
- Good π^0/γ separation up to ${\sim}50$ GeV.
- Optimal reconstruction of jets.
- Ability to identify heavy-flavor jets.

High-level input of pECal

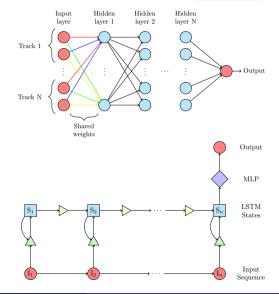

Heavy-flavor jet reconstruction at forward direction

- Study the jet reconstruction capability at the forward direction.
- Use tracking, pECal, and LFHCAL.
- Focus on the energy resolution of b/\bar{b} jets.
- Nihal, currently a student at California Bridge Program, learned the PYTHIA, ROOT, and ePIC software framework, plotted these resolutions.

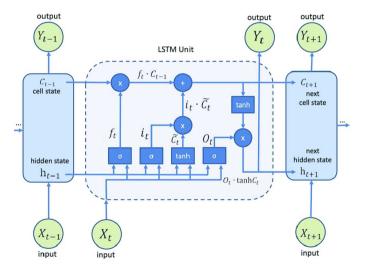
Energy resolutions for b/\bar{b} jets (From Nihal)

- Pythia events: $e(\gamma) + p(g) \rightarrow b + \overline{b}$.
- Find the true and reco jets closest to b and \overline{b} .
- Resolution = $\frac{E_{reco} E_{true}}{E_{true}}$.
- Good resolution up to $p_T^{jet} = 20$ GeV for 18x275 GeV beams.

HF jet identification


UCLA

• Purposes:


- Identify HF jets.
- Use HF decay electrons as the jet axis.

Input:

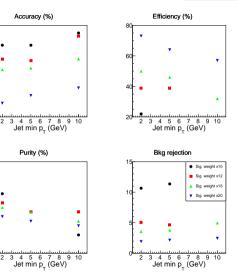
- Four momenta of jet constituents.
- Tracking momentum, pECal and LFHCAL energy.
- dRICH PID.
- Vertex and DCA.
- NN methods: BDT, LSTM.
- LSTM accepts variable-sized inputs.
- Figures from [PRD 94, 112002].

Introduction to LSTM

- Previous hidden state (h_{t-1}) and current input (X_t) produce forget gate (f_t), input gate (i_t), cell candidate (C̃_t), and output gate (O_t).
- Previous cell state (C_{t-1}) and cell candidate (\tilde{C}_t) produce current cell state: $C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t$.
- Cell state (C_t) has memory and produces the next hidden state (h_{t+1}) and the current output (Y_t): Y_t = h_{t+1} = O_t · tanhC_t.

$Q_{min}^2 > 10 \text{ GeV}^2.$ • let flavor ID: Only consid

Zhongling & Nihal (UCLA)


• Jet flavor ID: Only consider the jet closest to the hard-scattered quark q, identify the quark flavor q as the jet flavor.

• Pythia DIS events: $e + p \rightarrow q(jet) + X$,

- Signal: HF jets; Bkg: LF jets.
- N_{LF} : N_{HF} = 169619 : 9685 \approx 17.5 : 1.
- Training: Use LSTM, large weight on signal.
- Best overall performance: Weight signal by factor 15.
- 70% accuracy, 50% efficiency, 10% purity, 4 times bkg rejection.

100

Performance of jet HF ID

- The technology choices for all ECals in ePIC were defined.
- Performance of calorimeters were extensively verified with realistic simulations to meet YR requirements.
- Tracking, pECal, and LFHCAL provide good energy resolutions for the HF jets in the forward direction.
- LSTM gives reasonable performance for heavy-flavor jet identification.
- Including vertex and dRICH PID will give better jet ID in the future.