u-channel Physics at the EIC

Zachary Sweger University of California, Davis

Supported in part by

Zachary Sweger

• EIC will be a precision nuclear imaging machine

- EIC will be a precision nuclear imaging machine
- Meson production + DVCS golden channels for tomography

- EIC will be a precision nuclear imaging machine
- Meson production + DVCS golden channels for tomography

Tomography at the EIC

- EIC will be a precision nuclear imaging machine
- Meson production + DVCS golden channels for tomography

Tomography at the EIC

Scattering/production

- EIC will be a precision nuclear imaging machine
- Meson production + DVCS golden channels for tomography

Tomography at the EIC

- EIC will be a precision nuclear imaging machine
- Meson production + DVCS golden channels for tomography

Tomography at the EIC

Momentum transfer -*t* (GeV)

Zachary Sweger

Momentum transfer -*t* (GeV)

Momentum transfer -t (GeV)

UNIVERSITY OF CALIFORNIA

Momentum transfer -t (GeV)

Backward (*u*-channel) Theory

Check for updates

Backward DVCS and Proton to Photon Transition Distribution Amplitudes

J.P. Lansberg^{*} ^{ab}, B. Pire^a, and L. Szymanowski ^{bcd}

Transition distribution amplitudes and hard exclusive reactions with baryon number transfer

B. Pire^a, K. Semenov-Tian-Shansky^{b,c,*}, L. Szymanowski^d ^a CDUT CNPS Ecolo Dolutochniquo ID Daris 01128 Dalaisaau Era

PHYSICAL REVIEW D 82, 094030 (2010)

Spectral representation for baryon to meson transition distribution amplitudes

B. Pire,¹ K. Semenov-Tian-Shansky,^{1,2} and L. Szymanowski³

Progress and Opportunities in Backward angle (*u*-channel) Physics

C. Ayerbe Gayoso¹, Ł. Bibrzycki², S. Diehl^{3,4}, S. Heppelmann⁵, D.W. Higinbotham⁶, G.M. Huber⁷, S.J.D. Kay⁷, S.R. Klein⁸, J.M. Laget⁶, W.B. Li^{a,9,6}, V. Mathieu^{10,11}, K. Park¹², R.J. Perry¹³, B. Pire¹⁴, K. Semenov-Tian-Shansky^{15,16}, A. Stanek⁸, J.R. Stevens⁹, L. Szymanowski¹⁷, C. Weiss⁶, B.-G. Yu¹⁸ ¹Mississippi State University, Starkville, MS 39762, USA

 \bigcirc ²Institute of Computer Science, Pedagogical University of Krakow, 30-084 Kraków, Poland

Momentum transfer -*t* (GeV)

ortium

2

Backward (*u*-channel) Theory

• Forward cross sections (through GPDs) parameterize parton distributions in transverse plane

Backward (u-channel) Theory

ERBL: $x_3 = w_3 - \xi \ge 0; \quad x_1 + x_2 = \xi - w_3 \ge 0;$

B. Pire, K. Semenov-Tian-Shansky, and L. Szymanowski, Phys. Rept. 940, 1 (2021), arXiv:2103.01079 [hep-ph].

- Forward cross sections (through GPDs) parameterize parton distributions in transverse plane
- Backward cross sections (through Transition Distribution Amplitudes – TDAs) parameterize quark clusters and baryon number distributions in the transverse plane

"baryon-to-meson (and baryon-to-photon) TDAs share common features both with baryon DAs and with GPDs and encode a conceptually close physical picture. They characterize partonic correlations inside a baryon and give access to the momentum distribution of the baryonic number inside a baryon. Similarly to GPDs, TDAs – after the Fourier transform in the transverse plane – represent valuable information on the transverse location of hadron constituents."

Backward Tomography at the EIC

Zachary Sweger

Backward Tomography at the EIC

Backward scattering/production

Backward Tomography at the EIC

Backward scattering/production

Zachary Sweger

8/21/2023

Backward Tomography at the EIC

Backward Tomography at the EIC

23

24

u-channel DVCS models

u-channel DVCS models

<u>Conclusion from backward π^0 simulations:</u>

Zachary Sweger

Conclusion from backward π^0 simulations:

VCS background dominated by events in which one π^0 photon misses the ZDC, and the other carries majority of the energy

 $\Delta E/E \sim (2\% - 5\%)/\sqrt{E} \oplus 1\%$

Reducing Background apply missing energy cuts $\underbrace{\text{UNVERSITY OF CALIFORNIA}}_{\text{UNVERSITY OF CALIFORNIA}}$

0

Zachary Sweger

2 4 6 8 10 12 10 -5 E_{missing} smeared (GeV)

10

1_6

-4 -2

0

.........

10

0

10

⁵ 10 15 20 25 1 E_{missing} smeared (GeV)

20 30 40 E_{missing} smeared (GeV)

Missing energy cuts to collect entire VCS sample

• $5 \times 41 \text{ GeV: } E_{\text{missing}} < 1 \text{ GeV} \rightarrow \sim 70\% \text{ purity}$

Missing energy cuts to collect entire VCS sample

- $5 \times 41 \text{ GeV: } E_{\text{missing}} < 1 \text{ GeV} \rightarrow \sim 70\% \text{ purity}$
- $10 \times 100 \text{ GeV: } E_{\text{missing}} < 2 \text{ GeV} \rightarrow \sim 80\% \text{ purity}$

Reducing Background Missing energy cuts to collect entire VCS sample $5 \times 41 \text{ GeV: } E_{\text{missing}} < 1 \text{ GeV} \rightarrow \sim 70\% \text{ purity}$ $10 \times 100 \text{ GeV: } E_{\text{missing}} < 2 \text{ GeV} \rightarrow \sim 80\% \text{ purity}$ • $18 \times 275 \text{ GeV}$: $E_{\text{missing}} < 5 \text{ GeV} \rightarrow \sim 95\%$ purity ٠ fraction 5×41 GeV 10×100 GeV 18×275 GeV 0.8 0.6 $10^{-3} < Q^2 < 1 \text{ GeV}^2$ - • Purity - VCS Frac. 0.4 $1 < Q^2 < CeV^2$ Purity VCS Frac. 0.2 $2 < Q^2 < 5 \text{ GeV}^2$ Purity _1 0 -2 -2 0 2 -1 missing energy cut (GeV) missing energy cut (GeV) missing energy cut (GeV)

Zachary Sweger 8/21/2023 CA EIC Consortium

- VCS Frac.

10

43

Conclusion: missing p_T cuts do not additionally improve sample purity

Backward VCS Paper on ArXiv!

Zachary Sweger

Backward VCS Paper on ArXiv!

(public at 5pm today)

Modeling Backward-Angle (u-channel) Virtual Compton Scattering at an Electron-Ion Collider

Zachary Sweger, Saeahram Yoo, Ziyuan Zeng, and Daniel Cebra Department of Physics and Astronomy, University of California, Davis, California 95616, USA

> Spencer R. Klein, Yuanjing Ji, and Xin Dong Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Minjung Kim Department of Physics, University of California, Berkeley, California 94720, USA (Dated: August 21, 2023)

High-energy backward (u-channel) reactions can involve very large momentum transfers to the target baryons, shifting them by many units of rapidity. These reactions are difficult to understand in conventional models in which baryon number is carried by the valence quarks. Backward Compton scattering is an especially attractive experimental target, because of its simple final state. There is currently limited data on this process, and that data is at low center-of-mass energies. In this paper, we examine the prospects for studying backward Compton scattering at the future Electron-Ion Collider (EIC). We model the cross-section and kinematics using the limited data on backward Compton scattering and backward meson production, and then simulate Compton scattering at EIC energies, in a simple model of the ePIC detector. Generally, the proton is scattered toward mid-rapidity, while the produced photon is in the far-forward region, visible in a Zero Degree Calorimeter (ZDC). We show that the background from backward π^0 production can be rejected using a high-resolution, well-segmented ZDC.

I. INTRODUCTION

Backward (*u*-channel) Compton scattering (CS) occurs when a photon scatters backwards from a proton, with a large momentum transfer between the two as shown in Fig. 1a. This is in stark contrast to the more common *t*-channel process which dominates the CS cross section.

649 [hep-ph] 21 Aug 2023

Zachary Sweger

8/21/2023

47

Backward VCS Paper on ArXiv!

(public at 5pm today)

All California EIC Consortium Members

649 [hep-ph] 21 Aug 2023

Modeling Backward-Angle (u-channel) Virtual Compton Scattering at an Electron-Ion Collider

Zachary Sweger, Saeahram Yoo, Ziyuan Zeng, and Daniel Cebra Department of Physics and Astronomy, University of California, Davis, California 95616, USA

> Spencer R. Klein, Yuanjing Ji, and Xin Dong Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Minjung Kim Department of Physics, University of California, Berkeley, California 94720, USA (Dated: August 21, 2023)

High-energy backward (u-channel) reactions can involve very large momentum transfers to the target baryons, shifting them by many units of rapidity. These reactions are difficult to understand in conventional models in which baryon number is carried by the valence quarks. Backward Compton scattering is an especially attractive experimental target, because of its simple final state. There is currently limited data on this process, and that data is at low center-of-mass energies. In this paper, we examine the prospects for studying backward Compton scattering at the future Electron-Ion Collider (EIC). We model the cross-section and kinematics using the limited data on backward Compton scattering and backward meson production, and then simulate Compton scattering at EIC energies, in a simple model of the ePIC detector. Generally, the proton is scattered toward midrapidity, while the produced photon is in the far-forward region, visible in a Zero Degree Calorimeter (ZDC). We show that the background from backward π^0 production can be rejected using a high-resolution, well-segmented ZDC.

I. INTRODUCTION

Backward (*u*-channel) Compton scattering (CS) occurs when a photon scatters backwards from a proton, with a large momentum transfer between the two as shown in Fig. 1a. This is in stark contrast to the more common *t*-channel process which dominates the CS cross section.

8/21/2023

Zachary Sweger

48

CA EIC Consortium

	Summary	of u-channel	studies to-date	Phys. Rev. C 106,	015204 (2022)
			acceptan	nce rate	
Process	optimal collision energies	requires	without B0 EMCal	with B0 EMCal	
	$10 \times 100 { m ~GeV}$	ZDC	1.3%	41%	
ω	$18 \times 275 { m ~GeV}$	B0 EMCal	6%	63%	
ρ	$10 \times 100 { m ~GeV}$	B0 tracker	4	9%	
π^0	$18 \times 275 { m ~GeV}$	ZDC	65%	68%	
DVCS	$18 \times 275 { m ~GeV}$	ZDC B0 EMCal	75%	81%	
					40

Zachary Sweger

8/21/2023

	Summary	of u-channel	tudies to-date Phys. Rev. C 106		015204 (2022)
			acceptance rate		
Process	optimal collision energies	requires	without B0 EMCal	with B0 EMCal	
ω	$10 \times 100 { m ~GeV}$	ZDC	1.3%	41%	
	$18 \times 275 { m ~GeV}$	B0 EMCal	6%	63%	
ρ	$10\times 100~{\rm GeV}$	B0 tracker	49%		
π^0	$18 \times 275 { m ~GeV}$	ZDC	65%	68%	
DVCS	$18 \times 275 { m ~GeV}$	ZDC B0 EMCal	75%	81%	

• We need electromagnetic calorimetry in the B0

51

Summary of u-channel studies to-date Phys. Rev. C 106, 01520						
			acceptance	ce rate		
Process	optimal collision energies	requires	without B0 EMCal	with B0 EMCal		
ω	$10 imes 100 { m ~GeV}$	ZDC	1.3%	41%		
	$18 \times 275 { m ~GeV}$	B0 EMCal	6%	63%		
ρ	$10 \times 100 { m ~GeV}$	B0 tracker	49	9%		
π^0	$18 \times 275 { m ~GeV}$	ZDC	65%	68%		
DVCS	$18 \times 275 { m ~GeV}$	ZDC B0 EMCal	75%	81%		

• We need electromagnetic calorimetry in the B0

• We need excellent tracking in the B0

	Summary	of u-channel	studies to-date	Phys. Rev. C 106, 01520
			acceptance rate	
Process	optimal collision energies	requires	without B0 EMCal	with B0 EMCal
ω	$10 imes 100 { m ~GeV}$	ZDC	1.3%	41%
	$18 \times 275 { m ~GeV}$	B0 EMCal	6%	63%
ho	$10\times 100~{\rm GeV}$	B0 tracker	49%	
π^0	$18 imes 275 { m GeV}$	ZDC	65%	68%
DVCS	$18 \times 275 { m ~GeV}$	ZDC B0 EMCal	75%	81%

 \sim 04 (2022)

- We need electromagnetic calorimetry in the B0
- We need excellent tracking in the B0
- We need excellent ZDC resolution

53

Summary of u-channel studies to-date Phys. Rev. C 106, 015204 (202							
			acceptanc	ce rate	ite		
Process	optimal collision energies	requires	without B0 EMCal	with B0 EMCal			
	$10 \times 100 { m ~GeV}$	ZDC	1.3%	41%			
ω	18 imes 275 GeV	B0 EMCal	6%	63%			
ρ	$10 \times 100 { m ~GeV}$	B0 tracker	49	%			
π^0	$18 \times 275 { m ~GeV}$	ZDC	65%	68%			
DVCS	$18 \times 275 { m ~GeV}$	ZDC B0 EMCal	75%	81%			

- We need electromagnetic calorimetry in the B0
- We need excellent tracking in the B0
- We need excellent ZDC resolution

Zachary Sweger

• Designing benchmarks for far-forward detectors

• Designing benchmarks for far-forward detectors

backward $\rho \rightarrow \pi^+\pi^-$ at 10×100 GeV perfect for benchmarking B0 tracker

Zachary Sweger

57

• Designing benchmarks for far-forward detectors

backward $\rho \rightarrow \pi^+\pi^-$ at 10×100 GeV perfect for benchmarking B0 tracker

8/21/2023

CA EIC Consortium

• Designing benchmarks for far-forward detectors

backward $\pi^0 \rightarrow \gamma \gamma$ at 18×275 GeV perfect for benchmarking ZDC

• Designing benchmarks for far-forward detectors

backward $\pi^0 \rightarrow \gamma \gamma$ at 18×275 GeV perfect for benchmarking ZDC

Zachary Sweger8/21/2023CA EIC Consortium59

Zachary Sweger

• *u*-channel is key to achieving the full capabilities of nuclear tomography at the EIC

- *u*-channel is key to achieving the full capabilities of nuclear tomography at the EIC
- Impact-parameter-space interpretation of *u*-channel is rich and rapidly developing

- *u*-channel is key to achieving the full capabilities of nuclear tomography at the EIC
- Impact-parameter-space interpretation of *u*-channel is rich and rapidly developing
- To do:

- *u*-channel is key to achieving the full capabilities of nuclear tomography at the EIC
- Impact-parameter-space interpretation of *u*-channel is rich and rapidly developing
- To do:
 - Design B0 and ZDC benchmarks

- *u*-channel is key to achieving the full capabilities of nuclear tomography at the EIC
- Impact-parameter-space interpretation of *u*-channel is rich and rapidly developing
- To do:
 - Design B0 and ZDC benchmarks
 - \Box J/ ψ studies

- *u*-channel is key to achieving the full capabilities of nuclear tomography at the EIC
- Impact-parameter-space interpretation of *u*-channel is rich and rapidly developing
- To do:
 - Design B0 and ZDC benchmarks
 - \Box J/ ψ studies
 - \Box ϕ studies

- *u*-channel is key to achieving the full capabilities of nuclear tomography at the EIC
- Impact-parameter-space interpretation of *u*-channel is rich and rapidly developing
- To do:
 - Design B0 and ZDC benchmarks
 - \Box J/ ψ studies
 - \Box ϕ studies
 - □ Full ePIC simulations & reconstruction

Thank you for your attention!

zwsweger@ucdavis.edu

Backward VM paper: Phys. Rev. C 106, 015204 (2022) Backward VCS paper: search "ArXiv Sweger Klein Compton" 30 minutes from now!

Zachary Sweger

8/21/2023