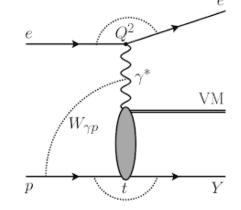

Exclusive ϕ at the EIC

Spencer R. Klein, LBNL

Presented at the EIC California Consortium Meeting Aug. 21-22, 2023

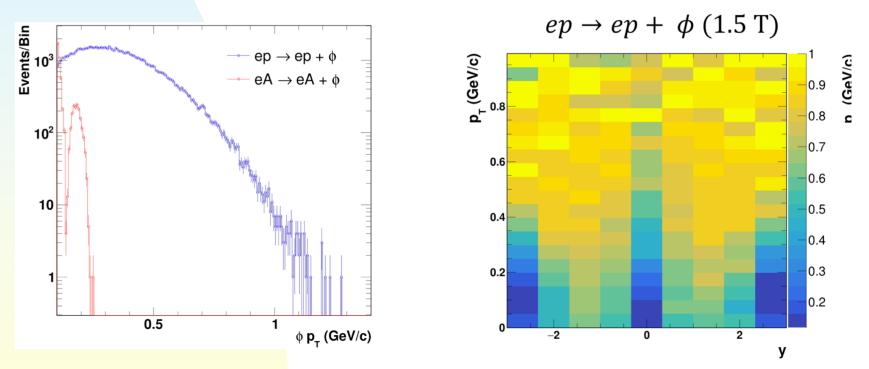
- The ϕ & limitations at the EIC
- - ρ^0 + direct $\pi\pi$ as a model
 - Experimental Status
- ePIC implications



Φ production

s-sbar vector meson with J^{PC}=1-

- Same quantum numbers as the photon
- M=1020 MeV, width Γ =4.4 MeV
 - Intermediate scale soft for pQCD, but heavier than the ρ
- Copiously produced via Pomeron exchange
 - - To lowest order, a Pomeron is two gluons
- Elastic scattering -> d_{\u0357}/dt (~d_{\u03577}) may be Fourier transformed to give the transverse distribution of scattering centers (gluons) in the target
- Incoherent scattering is sensitive to event-by-event fluctuations in the nuclear configuration
- Highlighted in the White Paper and Yellow Report

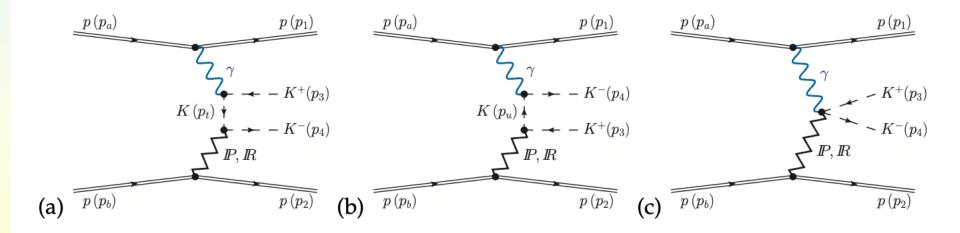

φ decay

Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)
Γ_1	<i>K</i> ⁺ <i>K</i> ⁻	$(49.1 \pm 0.5)\%$	S=1.3	127
Γ_2	$K^0_L \ K^0_S$	$(33.9 \pm 0.4)\%$	S=1.2	110
Γ_3	$ ho\pi+\pi^+\pi^-\pi^0$	$(15.4 \pm 0.4)\%$	S=1.2	

- Φ ->ee and Φ -> $\mu\mu$ branching ratios too small for large signal
- ρπ typically contains neutral particle(s)
- K_L lifetime is long enough to escape the detector
- Kaon momenta too small for easy reconstruction

$\boldsymbol{\varphi}$ production on heavy targets

- At low Q², $p_T \sim hbar/R_A \sim < 100 \text{ MeV/c}$
 - Need to study full Q² range to map out saturation
- Efficiency is poor because the kaons are so soft
 - ◆ Especially near y~0, where there is no *ϕ* Lorentz boost.



One (partial) solution: consider higher mass K⁺K⁻ pairs

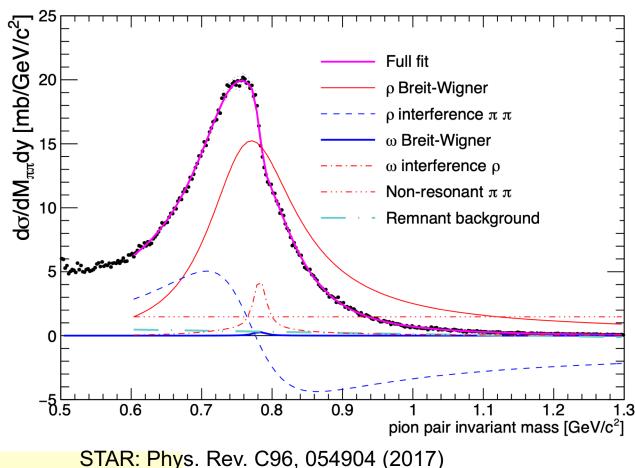
J. Arrington *et al.,* arXiv:2102.08337

Dikaons

- At least two ways to get K⁺K⁻ pairs
 - ♦ φ−>K+K-
 - New: Direct production of K+K- pairs_
 - Higher resonances, (e. g. the $\phi(1680)$)
- These channels interfere with each other; the amplitudes add. Similar to the ρ^0 + direct $\pi^+\pi^-$

P. Lebiedowicz et al., PRD 98, 014001 (2018)

Todays focus


ρ^0 + direct $\pi\pi$ data

Highest statistics modern measurement by STAR, with UPCs

♦ 294,000 pairs

Fit to ρ^0 + direct $\pi\pi + \omega$ + interference between them

χ²/DOF ~ 1

Mass spectrum

d σ /dM_{$\pi\pi$} given by a relativistic Breit-Wigner equation:

$$\frac{d\sigma}{dM_{\pi^+\pi^-}} \propto \left| A_\rho \frac{\sqrt{M_{\pi\pi}M_\rho\Gamma_\rho}}{M_{\pi\pi}^2 - M_\rho^2 + iM_\rho\Gamma_\rho} + B_{\pi\pi} + C_\omega e^{i\phi_\omega} \frac{\sqrt{M_{\pi\pi}M_\omega\Gamma_{\omega\to\pi\pi}}}{M_{\pi\pi}^2 - M_\omega^2 + iM_\omega\Gamma_\omega} \right|^2 + f_p$$

• A_{ρ} , $B_{\pi\pi}$ and C_{ω} are the amplitudes for the three components

- All can be complex (C_{ω} has its separate phase shown explicitly)
 - Relative phases matter
- ρ :direct $\pi\pi$ quantified by $|B_{\pi\pi}/A_{\rho}|$, with units GeV^{-1/2}
- f_p is background (e. g. γγ->ee)
- Widths depend on $M_{\pi\pi}$ (phase space)

$$\Gamma_{\rho} = \Gamma_0 \frac{M_{\rho}}{M_{\pi\pi}} \left(\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right)^{3/2}$$

Jackson, 1964)

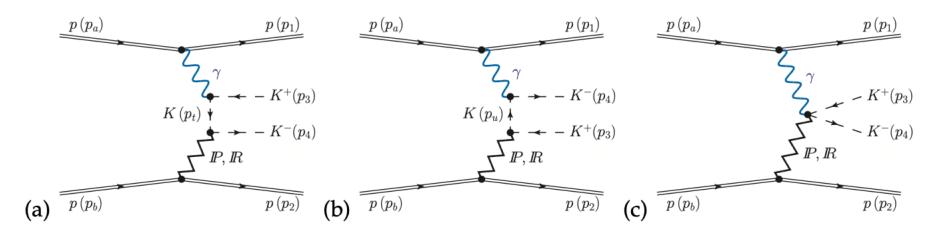
$$\Gamma_{\omega} = \Gamma_0 \frac{M_{\omega}}{M_{\pi\pi}} \left(\frac{M_{\pi\pi}^2 - 9m_{\pi}^2}{M_{\omega}^2 - 9m_{\pi}^2} \right)^n,$$

7

K⁺K⁻ channel

- No third (ω) component
- But, problem with low efficiency at low p_T
- - Need to know/assume lineshape well

$$\frac{d\sigma}{dM_{KK}} = \left| A_{\phi} \frac{\sqrt{M_{KK} M_{\phi} \Gamma_{\phi}}}{M_{KK}^2 - M_{\phi}^2 + iM_{\phi} \Gamma_{\phi}} + B_{KK} \right|^2 \tag{1}$$

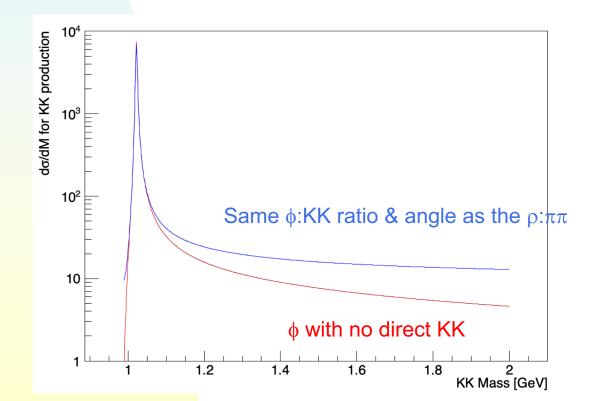

where $M_{\phi} = 1019.416 \pm 0.016$ MeV [10] and Γ_{ϕ} are the ϕ mass and mass-dependent width, respectively, with

$$\Gamma_{\phi} = \Gamma_0 \frac{M_K}{M_{KK}} \left(\frac{M_{KK}^2 - 4M_K^2}{M_{\phi}^2 - 4M_K^2} \right)^{3/2}.$$
(2)

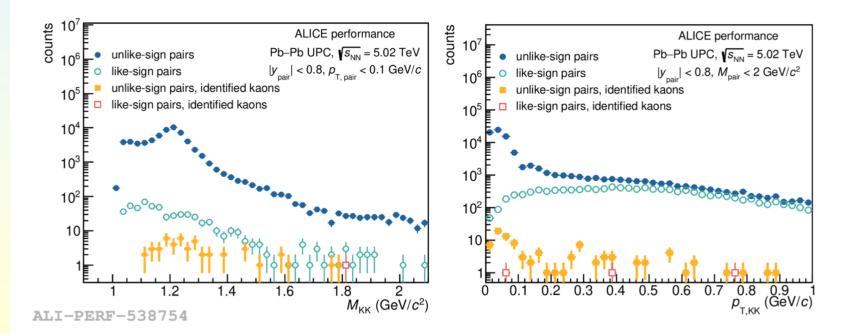
 Because of the mass-dependent width, drop-off is slower than it might be, even with B_{KK}=0


Direct KK

- Not yet observed (in journal articles)
- Direct KK production expected along with the ϕ , with the same mechanism like the ρ + direct $\pi\pi$
- Roughly similar relative amplitudes and relative phase (?)
- Higher masses than the ϕ , so easier to see
- Cross-section A (target nucleus) and Q² dependence may differ from the ϕ

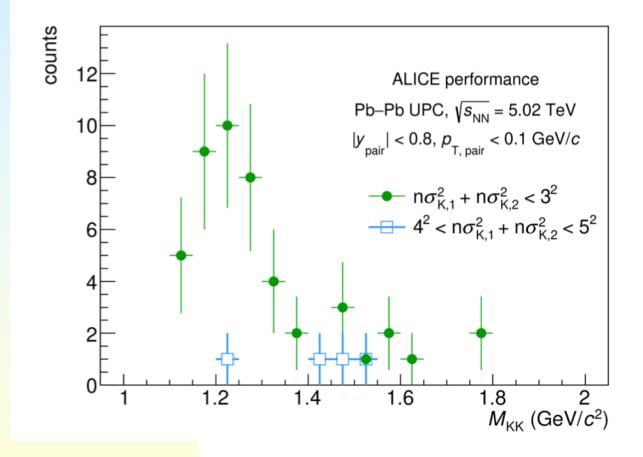

Effect on the ϕ peak

- KK mass spectrum, assuming the same ϕ :KK ratio & phase as ρ : $\pi\pi$
- Peak shift is very small (< 500 keV)</p>
- Amplitude is about 8% higher


High-mass KK pairs

- Far above M_{ϕ} , cross-section depends on both R= $|B_{KK}/A_{\phi}|$ and phase
 - $|\sigma(\phi) \sigma(KK)| < \sigma < |\sigma(\phi) + \sigma(KK)|$
 - Depending on phase

ALICE studies


- Parallels UPC ρ+direct ππ photoproduction analysis, but with tight PID cuts to select a clean KK sample (above the φ)
 - N(KK) ~ 1/1000 N(ππ)
- 1.1 GeV < M_{KK} < 1.4 GeV</p>
 - Sweet spot with OK acceptance and good PID $\pi\pi$ rejection

Minjung Kim at Hot Quarks 2023 and Nacer Hamdi at DIS 2023.

ALICE mass spectrum

Clean sample in chosen mass range

Minjung Kim at Hot Quarks 2023 and Nacer Hamdi at DIS 2023.

Some implications for ePIC

- ϕ reconstruction is difficult at small p_T since the kaons are so soft.
- - Direct KK production is a new phenomena!
- With high enough rates (i. e. ePIC), high mass KK pairs can be a proxy for the $\boldsymbol{\varphi}$
- For measurements at $M_{KK} >> M_{\phi}$, the amplitude ratio $|B_{KK}/A_{\phi}|$ and iphase angle are correlated
 - ePIC can study the φ peak at higher Q², and then assume that the phase angle does not change much as Q² decreases.
 - Theoretical justification is needed.
- Direct KK have a different wave function from the φ, so will complicate efforts to interpret φ data in terms of dipole-model parton densities.