Tracking performance from realistic seeding in J/ ψ photo-(electro-) production

California EIC Consortium Collaboration Meeting 22 August 2023

> Minjung Kim **UC Berkeley**

J/ψ photo-(electro-) production

- Coherent production of $eA \rightarrow eA'J/\psi \rightarrow e(e+e-)A'$ with eSTARLight
- Electron beam energy of 18 GeV:
 ELECTRON_BEAM_GAMMA = 35295
- Au ion (197, 79) 100 GeV/nucleon: TARGET_BEAM_GAMMA = 106.6
- Standard detector simulation under EPIC software framework: npsim + eic_recon
- EPIC geometry: epic_craterlake including barrel and endcap mpgd layers
- 0.5 M events per each Q² range

Kinematic acceptance of final state particles

5 < Q² < 10 (GeV)²

scattered electron

Kinematic acceptance of final state particles

5 < Q² < 10 (GeV)²

scattered electron

Transverse momentum of final state particles

5 < Q² < 10 (GeV)²

- Both scattered electron and decay products are mostly in EPIC acceptance!
- Reconstructed pT from realistic seeding not too far from the one from true seeding (and MC truth)
- Secondary fraction is different in true/ realistic seeding

Transverse momentum resolution from true seeding

-1 < η < 1

 $0.8 < p_{_{T}}$ (GeV/c) < 1.2 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 (rec - truth)/truth

 $2.0 < p_{_{T}}$ (GeV/c) < 2.4

Transverse momentum resolution from realistic seeding

-1 < **η** < 1

True seeding vs. Realistic seeding

-1 < η < 1

Good match between True seeding and Realistic seeding

True seeding vs. Realistic seeding: multiplicity

- known issue: duplicated tracks realistic seeding; resulting large track multiplicity
- Next step: Track reduction in realistic sending and matching between particle and track

Summary and outlook

- Simulation full chain is ready for vector meson photoproduction using eSTARLight
- Validate tracking performance
 - Matching between MC particle and track
 - Fake/duplicate track study
 - Effect of MPGD layers
 - Add quality reflected variables into streaming output
- Update the projection in Yellow Report including [t] distribution
- Extend to other quarkonium states: $\psi(2S)$, $\Upsilon(nS)$

J/ ψ photo-(electro-) production

- Coherent production of $eA \rightarrow eA'J/$ $\psi \rightarrow e(e+e-)A'$ with eSTARLight
- Electron beam energy of 18 GeV: $ELECTRON_BEAM_GAMMA = 35295$
- Au ion (197, 79) 100 GeV/nucleon: TARGET BEAM GAMMA = 106.6
- Standard detector simulation under EPIC software framework: npsim + eic_recon
- EPIC geometry: epic_craterlake including barrel and endcap mpgd layers
- 0.5 M events per each Q² range

Event characteristics

W_{γp}

Bjorken x

Event characteristics

Itl distribution

Scattered electron pseudorapidity

Scattered electrons in MC

Scattered electron pseudorapidity

Scattered electron energy

Summary and outlook

- Simulation full chain is ready for vector meson photoproduction using eSTARLight
- Validate tracking (+clustering of CALO) performance
- Update the projection in Yellow Report including |t| distribution
- Extend to other quarkonium states: $\psi(2S)$, $\Upsilon(nS)$

Kinematic acceptance of final state particles

$5 < Q^2 < 10 (GeV)^2$

MC truth: proton (off from ion) True seeding: secondary/transport **Realistic seeding: secondary/transport**

> **MC** truth **True seeding Realistic seeding**

