Characterization of Strip Scintillator for FDC

By: Yousef Abdelkadous University of California, Riverside

Motivation for the FDC

Goal of EIC: Discovery of Gluon Saturation

Pseudorapidity Coverage of the FDC

Full study requires the unfeasible region

- $0.1 < Q^2 < 1.0 \text{ GeV}$
- Given the name "The Q² Gap"
- Coincides with $-4.6 < \eta < -3.6$

The limit of $\eta \approx -3.6$ is due to the Ecal Required Structure

Ecal has a hole of ≈ 8 cm to slide into the beams

A Few-Degree Calorimeter for the Future Electron-Ion Collider

A Few-Degree Calorimeter for the future Electron-Ion Collider

Miguel Arratia^{a,b,*}, Ryan Milton^a, Sebouh Paul^{a,b}, Barak Schmookler^a, Weibin Zhang^a

^aDepartment of Physics and Astronomy University of California Riverside CA 92521 USA ^bThomas Jefferson National Accelerator Facility Newport News VA 23606 USA

Abstract

Measuring the region $0.1 < Q^2 < 1.0 \text{ GeV}^2$ is essential to support searches for gluon saturation at the future Electron-Ion Collider. Recent studies have revealed that covering this region at the highest beam energies is not feasible with current detector designs, resulting in the so-called Q^2 gap. In this work, we present a design for the Few-Degree Calorimeter (FDC), which addresses this issue. The FDC uses SiPM-on-tile technology with tungsten absorber and covers the range of $-4.6 < \eta < -3.6$. It offers fine transverse and longitudinal granularity, along with excellent time resolution, enabling standalone electron tagging. Our design represents the first concrete solution to bridge the Q^2 gap at the EIC.

The Few-Degree Calorimeter (FDC)

We Propose the Few-Degree Calorimeter (FDC)

Placed between the Ecal crystal and the backward Hcal

Covers the region of particles missed by Ecal in region around the beampipes

Uses SiPM-on-Tile Technology

Structure of the FDC

Layers of the FDC

- Tungsten layer
- Scintillators (Horizontal and Vertical Var.)
- Reflective foil
- SiPM-carrying PCB

With 2 sections to slide out left and right

25.0 cm

0.4

13.2 cm

The Scintillators Strips

Dimpled Scintillators ✤ Air-Coupled SiPM

Emits light when by a particle ionizesthe materialLight is readout by SiPM

Reflective Foil LayerMaximizing light-yield

• The Scintillator Dimple

Scintillators are covered from all sides except the dimple

Annealing Scintillators

0

Heated for 4 hours at 80C Removes Crazings

• 3D printed frame

Isolates cells to avoid optical crosstalk

Holds scintillators in place and defines layer

Designed on Sketchup

The ESR Foil

Fits to cover all scintillators in a layer

Designed to fit SiPM to avoid any escaping light particles

Done by CNC laser and designed one Fusion360

Testing Scintillators

Testing Scintillators

Granularity of the Strip Scintillator

Horizontal and Vertical orientation of each layer

- High Granularity
- 10x10 mm² granularity

Provides Information of position

The scintillators are painted white on the sides, and covered with foil to maximize light yield
Removes noise signals

SiPM PCB

Provides a Readout for the particles

Consists of pixels, each having multiple photodiodes

- SiPM is provided a voltage to put the diode at its limit
- "Overspills" when light strikes the diodes letting electrons through to provide readout

This provides information of energy and time of particle that was detected after the collision

Prototype

Total of 16 layers

Planning to assemble and test with beam at lab setting

Next Step Goal: Visualizing showers of different particles

Conclusions

- This designs "bridges" the Q^2 gap to the EIC
- It covers -4.6 < η < -3.6 enabling studies of perturbative QCD and gluon-saturation regime
- It provides high granularity of 10 x 10 mm² 5D shower measurements position, time, and energy