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ALICE: A LARGE IoN COLLIDER EXPERIMENT %@

ALICE

m Hermetic detector experiment at the Large Hadron Collider
investigating strongly-interacting matter and the quark-gluon
plasma

m Operating in continuous* readout mode since Run 3

m ~ 18 subdetectors: trackers, calorimeters, triggers, muon system,
etc.
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THE INNER TRACKING SYSTEM (ITS) &

ITS — ITS2 upgrade during LS2

Seven concentric layers (20-400 mm from beamline), |n| < 1.22
High tracking efficiency and pointing resolution: 95% and
100 pm at pt= 200 MeV

m 0.35% X/Xo material budget per layer

m Water-cooled to room temperature (20-25°C)

m 12.5 Gpx over 10.3 m? area

m The ALICE Pixel Detector (ALPiDe): CMOS-based MAPS

[1]
ALICE ITS2 average cluster size




ALPIDE: KEY FEATURES

29 um x 27 pm pixel pitch
Implemented with TowerJazz 180 nm CMOS Imaging Process

=

=

m Deep p-well: full, complex CMOS logic within pixel matrix
m In-pixel amplification, shaping, discrimination, hit buffers
=

In-matrix data sparsification via priority encoder
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ITS TRACKING AND VERTEXING

Charge deposition spread across pixels from particle
crossing
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ITS TRACKING AND VERTEXING

Charge deposition spread across pixels from particle
crossing
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ITS TRACKING AND VERTEXING %@
ALICE

Charge deposition spread across pixels from particle
crossing

Collection of clusters from different layers reconstructed
as single particle

Cluster size

Total number of pixels in cluster on layer
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ITS TRACKING AND VERTEXING %@
ALICE

Charge deposition spread across pixels from particle
crossing

Collection of clusters from different layers reconstructed
as single particle

Cluster size

Total number of pixels in cluster on layer

Average cluster size

Average cluster size over clusters in single track
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WHY CLUSTER SIZE?

Data QA
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PARTICLE SELECTION: 7~ AND p*

m Particle-pixel interaction determined by Bethe-Bloch curve of
particle species
m ITS standalone = only track-level information = no TPC PID!

m “Home-brewed” ITS standalone PID

dE/dx (arb. units)
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ITS STANDALONE PID

m Kinematic track topology cuts; mass hypotheses/competing
decay rejection
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ITS STANDALONE PID

m Kinematic track topology cuts; mass hypotheses/competing
decay rejection
m Exploit neutral two-body (V°) decays:
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ITS STANDALONE PID

m Kinematic track topology cuts; mass hypotheses/competing
decay rejection
m Exploit neutral two-body (V°) decays:
Kg — T (69%)
Kg — 7T07TO (30%)

TS, s,

From [4]
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ITS STANDALONE PID

m Kinematic track topology cuts; mass hypotheses/competing
decay rejection; Armenteros-Podolanski variables
m Exploit neutral two-body (V°) decays:
Kg = T (60%) N — p™ (64%) A — P (6a%)

K% — 7970 (30%) A — 0 @o%) A — a0 @o%)

TS,

From [4]
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ITS STANDALONE PID

m Kinematic track topology cuts; mass hypotheses/competing
decay rejection; Armenteros-Podolanski variables
m Exploit neutral two-body (V°) decays:
Kg = T (60%) N — p™ (64%) A — P (6a%)
K% — 7970 (30%) A — 0 @o%) A — a0 @o%)
m Prioritize purity over efficiency

TS,

From [4]
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WEAK DECAY TOPOLOGY
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WEAK DECAY TOPOLOGY

reco QA
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WEAK DECAY TOPOLOGY

reco QA

VO selection
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WEAK DECAY TOPOLOGY

reco QA

VO selection
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1 DEPENDENCE
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m Higher 1 crosses layers at steeper angles: higher ACS
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PARTICLE SPECIES DEPENDENCE

7" vs. p* ACS (data) via A°
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m ACS shifted to higher size for protons, as expected from
Bethe-Bloch
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MONTE CARLO TO DATA COMPARISON

p* ACS in MC and data via A°
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m > 90% purity with o and p7 cuts
m Data exhibits lower ACS than MC
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SUMMARY

m Track ACS is a useful performance metric for a pixel silicon
tracker, influenced by many important aspects of tracking

m High-purity PID via kinematic cuts empowers average cluster size
to isolate tracker effects and be data source-agnostic

m Analysis confirms general expectations about cluster size:

» Higher 1) (steeper angular crossing) deposits more charge on
average
» Different particle species have different ACS curves

m Discrepancies between simulation and data can flag areas for
improvement in simulation
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bonjour c'est moi
helium. *

TOP DOING PARTICLE
PHYSICS

« PARTICLES WERE NEVER MEANT TO BE
SMASHED TOGETHER

« Years of particle physics and NO REAL-WORLD USE
for anything besides protons, neutrons, and electrons

je suis un gaz noble

+ "Muon decay is mediated by a virtual W- boson” -
statements dreamed up by the UTTERLY DERANGED

LOOK at what particle physicists have been

' demanding your Respect for all this time, with all the
e particle accelerators we built for them
This is REAL PARTICLE PHYSICS done by
REAL PARTICLE PHYSICISTS

-
222272 kayaking?
ella | would like a top squark and a

higgsino please™
They have played us for absolute fools

'-T-ITE PHYSICIST HEARING NEWS ABOUT ROOM
'I'EIIPEIHI'I' llli! SUPERCONDUCTORS FOR THE 2ND TIME IN THIS YEAR

ha

Don’t do that.
Don’t give me hope.

«O>» <« F>»
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