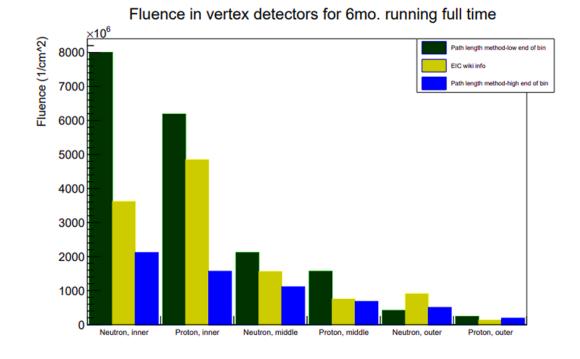
Radiation environment in inner vertex detectors

Sonny Fecanin 8/8/2023

What the project entails


- Radiation environment around collision point and innermost radii
- Sources of radiation:
 - Electron-proton collisions
 - Proton beam-gas events
 - Electron beam-gas events
 - Synchrotron radiation
- Finding fluence and dose in vertex detectors
- Creating 2d histograms of fluence, flux and dose in the inner 300mm region.

Fluence Methods

- VertexBarrelHits branch: gives fluence of charged particles within vertex detectors
- MCParticles branch: output can be used to find fluence of uncharged particles
 - Use knowledge of vertex and endpoint to sum up paths within cylindrical shell

Fluence Results

- Comparison to wiki:
 - This is for proton beam-gas->
- Expected fluences in 6 months running worst case scenario
 - 26 weeks/year at max luminosity

Neutron Fluences (all neutrons)

Detector	IP collisions	Beam-gas	Total
Inner	6.84e9	1.41e9	8.25e9
Middle	5.23e9	1.36e9	6.60e9
Vertex	4.39e9	1.22e9	5.61e9

Special Fluences – all contributions

Detector	>20MeV n	Charged hadrons
Inner	2.33e9	5.00e10
Middle	1.33e9	2.82e10
Vertex	2.02e8	4.97e9

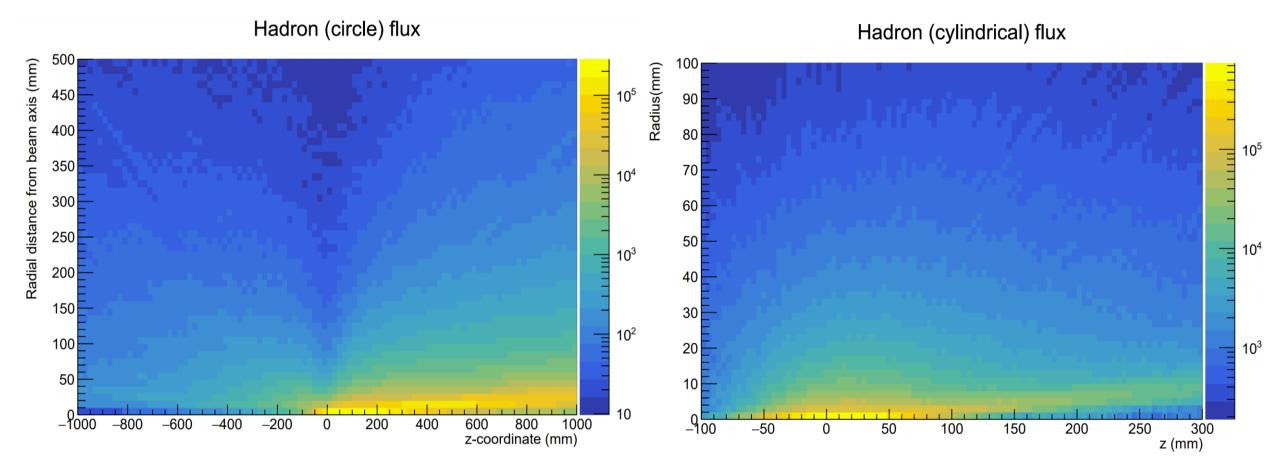
Dose Calculations

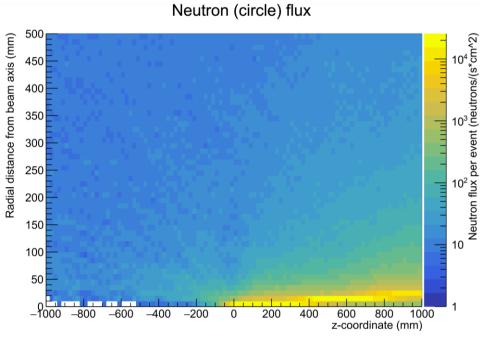
- Detector hits simulation output (charged hadrons only in table below)
- EIC wiki dose: charged hadron dose
 - Averaged over the bins from -15 to 15cm within which the vertex detectors are located

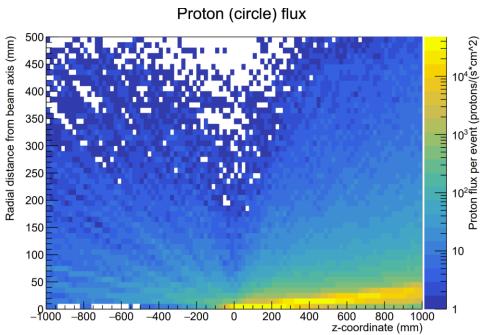
Comparison between VBH output and EIC wiki: charged hadron dose,

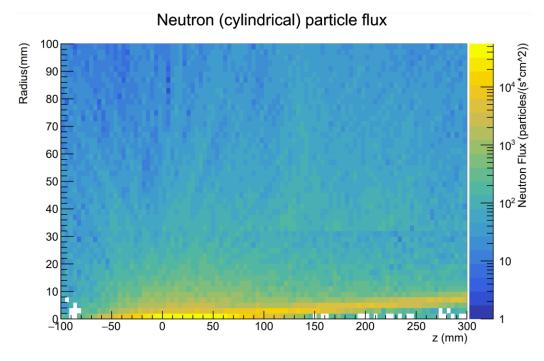
<i>'</i> ,	e-p collisions		Beam-gas events		
Detector	VertexBarrelHits	EIC wiki	VertexBarrelHits	EIC wiki	
Inner	1498	788	102.6	22.5	
Middle	808.4	661	77.9	32.0	
Outer	172.7	84.6	16.6	9.16	

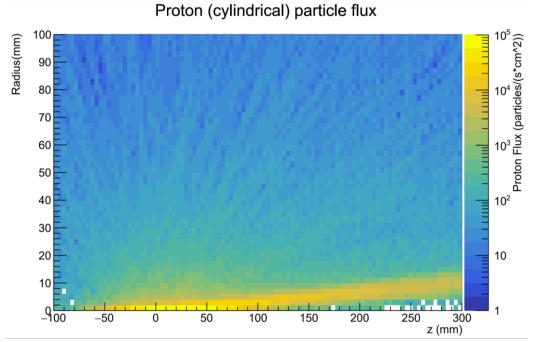
All doses are reported in rad


Flux Methods


- Method used: counting number of particles intersecting with surface, scaling by rate at which events occur and 1/surface area
- Instantaneous flux is not as important to radiation, but may be significant in detector occupancies


Flux Plots


Circular flux


Cylindrical flux

EIC vs ALICE dimensions

- ALICE assumes a 10 year runtime
- The dimensions of the three innermost detectors in ALICE and EIC are shown below
 - All dimensions are in mm

ALICE inner detector dimensions

Detector	Inner radius	Outer radius	Min z	Max z
SPD1	39	39.71	-165	165
SPD2	76	76.71	-165	165
SDD1	140	140.75	-222	222

EIC inner detector dimensions

Detector	Inner radius	Outer radius	Min z	Max z
Inner vertex	35.98	36.02	-135	135
Middle vertex	47.98	48.02	-135	135
Outer vertex	119.98	120.02	-135	135

Fluence comparison to ALICE

- There are many lower energy neutrons floating around -- our simulation discards those with Ekin<10MeV
- Greater proportion of EIC fluence is due to beam-gas compared to ALICE

Total neutrons - data is a combination of our simulation outputs and EIC wiki info

ALICE Fluence (/cm^2) EIC Fluence (/cm^2) ALICE/EIC ratio

Detector	IP collisions	Beam-gas	Total	IP collisions	Beam-gas	Total	IP collisions	Beam-gas	Total
Inner	8e11	1.8e10	8.5e11	6.84e10	1.41e10	8.25e10	11.7	1.28	10.3
Middle	5.6e11	1.4e10	6.0e11	5.32e10	1.36e10	6.60e10	10.7	1.03	9.1
Outer	4.5e11	1.4e10	4.9e11	4.39e10	1.22e10	5.61e10	10.3	1.15	8.7

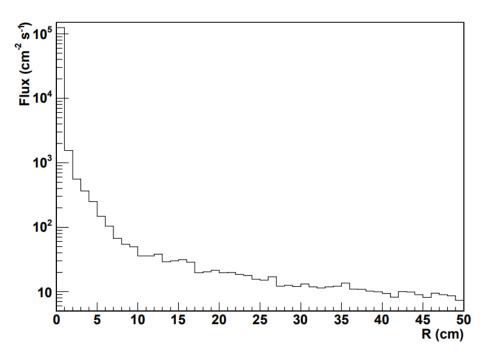
10

Fluence comparison to ALICE

- There are many lower energy neutrons floating around -- our simulation discards those with Ekin<10MeV
- Greater proportion of EIC fluence is due to beam-gas compared to ALICE
- Overall, fluence seems to be 10% that of ALICE

Special fluence - data is solely from our simulation output

ALICE Fluence (/cm^2) EIC Fluence (/cm^2) ALICE/EIC ratio

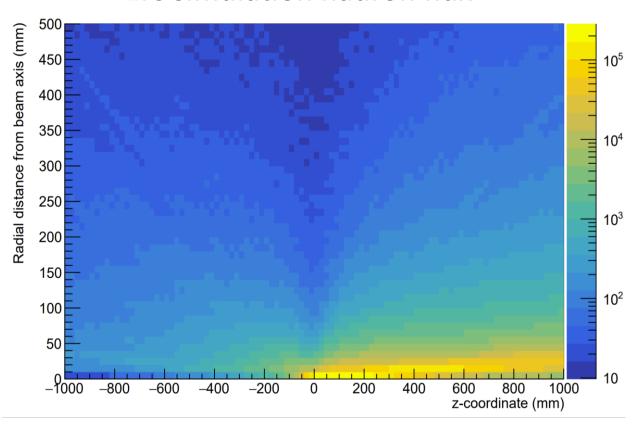

Detector	>20MeV n	Charged hadrons	>20MeV n	Charged hadrons	>20MeV n	Charged hadrons
Inner	3.4e11	4.0e12	2.33e10	5.00e11	14.59	8.00
Middle	1.4e11	1.2e12	1.33e10	2.82e11	9.52	4.26
Outer	3.7e11	3.8e11	2.02e9	4.97e10	18.32	7.65

Flux comparison to ALICE

- ALICE report doesn't include much about fluxes, other than a histogram of the circle-method flux at the tunnel entrance.
 - The highest flux at the tunnel entrance was reported to be 10^5 Hz/cm²
 - The most significant contribution to hadron flux was from charged hadrons.

Hadron flux at the tunnel entrance as a function of distance from the beam axis

(figure 4 in ALICE radiation report)


Flux comparison to ALICE

• EIC max flux seems to be the same order of magnitude as ALICE

ALICE hadron flux at some z value

Flux (cm⁻² s·¹) 10 ₀ 10 10³ 10² 10 ⊨ R (cm)

EIC simulation hadron flux

Dose comparison to ALICE

ALICE dose (Gy)

EIC dose (Gy)

ALICE/EIC ratio

Detector	IP collisions	Beam-gas	Total	IP collisions	Beam-gas	Total	IP collisions	Beam-gas	Total
Inner	2000	250	2750	205.2	47.8	253.0	9.75	5.23	10.9
Middle	510	48	680	124.2	34.8	159.0	4.11	1.38	4.28
Outer	190	12	250	27.4	5.5	32.8	6.93	2.18	7.62

- Dose is approx. 15% that of ALICE
- Dose contributions from beam-gas events are more significant in EIC than ALICE
 - 20% of total dose in EIC is from beam-gas contributions
 - This data does not account for electron beam-gas events in EIC

Summary

- Using my code and simulations I ran, I will be able to determine the fluence, flux, and dose through the vertex detectors. I am also able to create maps of the flux.
- I am not able to create (charged particle) fluence and dose maps with the output I have
- Overall radiation in the innermost (vertex) detectors of EIC for a 10 year period can be expected to only be 10% 15% that of the innermost detectors of ALICE
- Beam-gas events are a more significant part of radiation in EIC as compared to ALICE, but still only ~20-25% of the total radiation

Acknowledgments

- Dr. Alexander Jentsch
- Mr. Stephen Maple
- Dr. Todd Huffman
- Dr. Sam Henry

Radiation Doses information on EIC wiki https://wiki.bnl.gov/EPIC/index.php?title=Radiation Doses

ALICE radiation report: A. Morsch and B. Pastircak, ALICE Internal Note 2002-28. "Radiation in ALICE detectors and electron racks"