EMCal: Minimal Energy Requirements

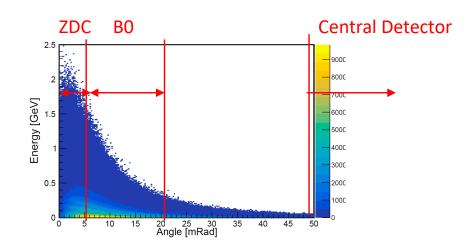
A.Bazilevsky (BNL)
ePIC Calorimetry Meeting
August 9, 2023

YR (and other) Input

- ightharpoonup YR/SIDIS: Feed-down to Λ from $\Sigma^0
 ightharpoonup \Lambda \gamma$: $E_{\gamma} = 200$ MeV (400 MeV) at $\eta < 3$ ($\eta > 3$)
- YR/Jet: 200 MeV threshold in EMCal:
 "good jet energy scales and missing transverse energy resolutions"
- > YR/Diffractive: separating coherent and incoherent interaction:

"Photon detectors must be able to detect photons with MeV energies in the nuclear rest frame, corresponding to 100 MeV in the lab frame."

However: it relates mainly to far forward acceptance (B0, ZDC)


My study / Inclusive (DIS electron reco): Bremsstrahlung photon reco down to 50 MeV is desirable in backward EMCal

However: this study was done for 3T magnet with discrete material location; studies for ePIC configuration showed 100 MeV threshold should be good enough

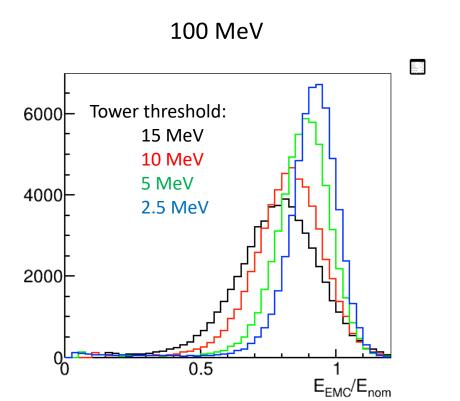
From Barak Schmookler:

De-excitation Photons 18 GeV e + 110 GeV /A ²³⁸U

The contribution of central detector to such photon detection is negligible

Requirements for EMCal E_{min}

	E-endcap	Barrel	H-endcap
YR: Table 10.6	50 MeV	50 MeV	50 MeV
YR: Table 3.1, 11.40	50 MeV	100 MeV	50 MeV
Project: EIC Det Requirements	50 MeV	100 MeV	100 MeV

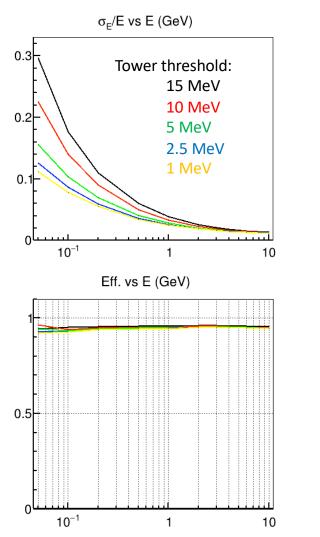

Central tower hit in the center, absorbs ~80% of EM shower energy, leaving the rest 20% distributed among ~4 towers => 5% of the shower energy per towers.

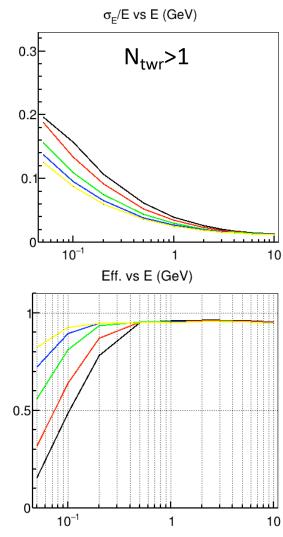
$$E_{cl} = 100 \text{ MeV} \implies E_{twr} = 5 \text{ MeV}$$

 $E_{cl} = 50 \text{ MeV} \implies E_{twr} = 2.5 \text{ MeV}$

E_{twr} affects both the efficiency and resolution

In the following: Single particle simulation (no multiplicity, no background)

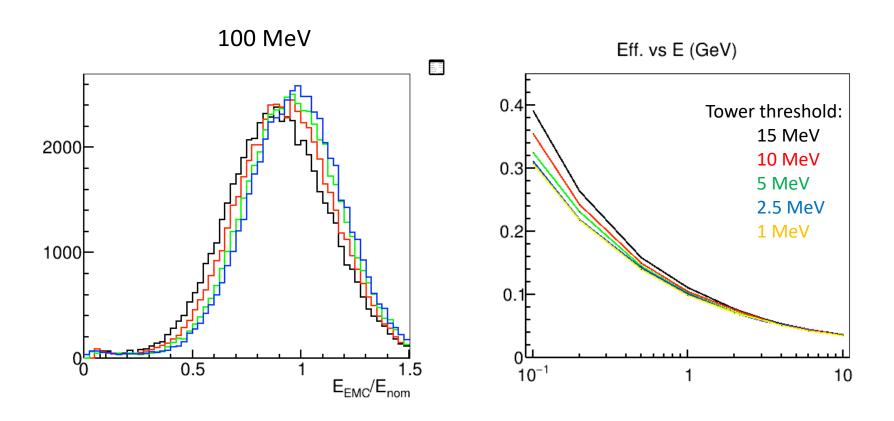

y reco in backward EMCal



Fraction of clusters with 1 tower

Tower Threshold	50 MeV	100 MeV
15 MeV	84%	50%
10 MeV	67%	34%
5 MeV	42%	15%
2.5 MeV	24%	6%
1 MeV	13%	2%

reco in Backward EMCal

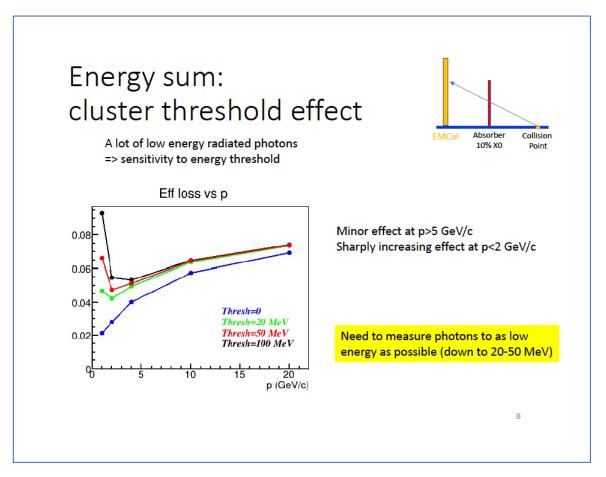


Backward EMCal (PWO):

If we accept clusters of 1 tower => 5 MeV threshold looks acceptable

reco in Forward EMCal

Forward EMCal (W/SciFi):


If we accept clusters of 1 tower => 15 MeV threshold looks acceptable

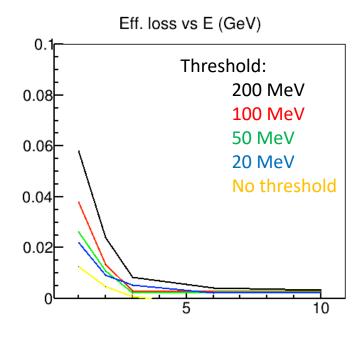
Backup

e reco in backward EMCal 1

Eff loss due to Bremsstrahlung radiation coupled with energy threshold in EMCal: below (Mean-2sigma) Energy sum in the EMCal is used (single e simulation)

From my presentation in Aug 2021 for ATHENA and ECCE

3T solenoid 10% of material at one spot in z


Additional loss due to cluster energy threshold, for 1 GeV e:

50 MeV: 4%

100 MeV: 7%

e reco in backward EMCal 2

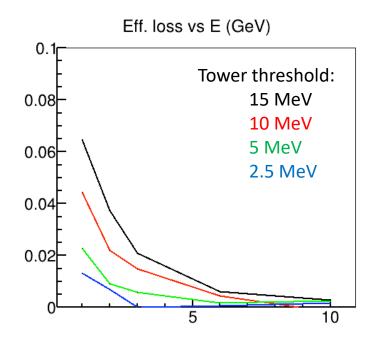
Eff loss due to Bremsstrahlung radiation coupled with energy threshold in EMCal: below (Mean-2sigma) Energy sum in the EMCal is used (single e simulation)

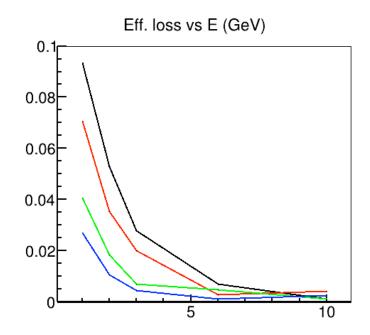
Baseline (no material no threshold) subtracted

```
ePIC:
1.7T
"Realistic" material distribution
(3-5% X0 away from EMCal)
```

Additional loss due to cluster energy threshold, for 1 GeV e:

50 MeV: 2.5% 100 MeV: 4%


Need to measure photons down to 50-100 MeV


e reco in backward EMCal 2

Eff loss due to Bremsstrahlung radiation coupled with energy threshold in EMCal: below (Mean-2sigma) Energy sum in the EMCal is used (single e simulation)

Consider all clusters with towers above threshold

Consider all clusters with towers above threshold, >=2 towers

Threshold of 10 MeV and below looks acceptable

Threshold of 5 MeV and below looks acceptable