Raphael Akel Abrahao Aug 25 2023 Department of Physics

Brookhaven
National Laboratory

Quantum Astrometry

2. An example of how quantum optics improves imaging

- 1. Introduce myself
-
- 3. Quantum Astrometry
	- A. Theory
	- B. Proof-of-principle demonstration
	- C. Spectrometer

Undergrad and Master's Electrical Engineering

Spectral Analysis of five times ionized xenon

Atomic spectroscopy → Astronomy

PhD

Quantum Optics and Quantum Information

PostDoc

uOttawa

Co Brookhaven
National Laboratory

I joined BNL in October 2022

Example: how quantum optics can improve spatial resolution of far away objects?

PHYSICAL REVIEW LETTERS 123, 143604 (2019)

Optimal Imaging of Remote Bodies Using Quantum Detectors

L. A. Howard, ¹ G. G. Gillett, ¹ M. E. Pearce, ² R. A. Abrahao, ¹ T. J. Weinhold, ¹ P. Kok, ² and A. G. White ¹Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, 4072 Brisbane, Australia ²Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

Rayleigh, Abbe, and Sparrow limits

smallest resolvable feature (laterally)

Resolved

Rayleigh Limit

Not Resolved

 $k = 1.22$ $k = 1$ $k = 0.94$ Rayleigh Abbe Sparrow

$$
d = \frac{k}{2} \frac{\lambda}{n \sin \theta} = \frac{k}{2} \frac{\lambda}{NA}
$$

Circumventing the Rayleigh-Abbe limits

super-resolution techniques: exploit physical structure of the object

Rust, et al., *Nature Methods* **3**, 793 (2006) Betzig, et al., *Science* **313**, 1642 (2006) Fernández-Suárez et al., *Nature Reviews Mol. Cell Bio.* **9**, 929 (2008)

-
-
-
-
-
-
-

Circumventing the Rayleigh-Abbe limits

object illumination with entangled states of light

- D'Angelo, et al., *PRL* **87**, 777 (2001)
	-
- Lemos, et al., *Nature* **512**, 409 (2014)
- Slussarenko, *Nature Photonics* **11**, 700 (2017)

super-resolution techniques: exploit physical structure of the object

Rust, et al., *Nature Methods* **3**, 793 (2006) Betzig, et al., *Science* **313**, 1642 (2006) Fernández-Suárez et al., *Nature Reviews Mol. Cell Bio.* **9**, 929 (2008)

Circumventing the Rayleigh-Abbe limits

object illumination with entangled states of light

D'Angelo, et al., *PRL* **87**, 777 (2001) Lemos, et al., *Nature* **512**, 409 (2014)

super-resolution techniques: exploit physical structure of the object

Rust, et al., *Nature Methods* **3**, 793 (2006) Betzig, et al., *Science* **313**, 1642 (2006) Fernández-Suárez et al., *Nature Reviews Mol. Cell Bio.* **9**, 929 (2008)

Complex degree of coherence

van Cittert-Zernike theorem relates the CDC to the source distribution via a 2D Fourier transform

Fano, *American Journal of Physics* **29**, 539 (1961) Glauber, *Physical Review Letters* **10**, 84 (1963)

Measuring the CDC: Traditional method Hanbury Brown — Twiss effect

two paths for light to go from atoms to detectors amplitudes of the two paths interfere

- if one detector fires, which atom did it come from?
	- amplitudes of the two paths interfere
	- to see interference, add variable phase

Now add a 50% beamsplitter Measuring the CDC: Count method

atoms

 $|20\rangle + e^{i\phi}|02\rangle$

Measuring the CDC: Count method Now let two photons be emitted from … somewhere

top detector can count two photons

nonclassical interference: phase super-resolution

Measuring the CDC: Count method Now let two photons be emitted from … somewhere

each detector can count one photon

Check with coherent source

Probability x Applied Phase

3 Methods: Now with pseudothermal light

Count: variable phase + photon-number resolution

Click: variable phase, but NO photon-number resolution (click/ no click)

Traditional: NO variable phase (subset of *Count*)

 $\gamma = 0.20 \pm 0.16$

Incoherent source: traditonal scheme $\gamma(\mathbf{r}_1, \mathbf{r}_2) = |\gamma| e^{i\phi}$

 $\varphi = 4.50 \pm 1.0$

Incoherent source: count scheme

Incoherent source: click scheme

what if we don't count photons?

Click vs count schemes

2019 ApJL 875

Black hole in the center of M87 imaged at 1.3mm Achieved by radio interferometry with \sim 10000 km baselines

sensitive to features on angular scale

 $\Delta \theta \sim \frac{\lambda}{\tau}$

Can record entire waveform, over some band, separately at each receiver station and interfere later offline

One photon at a time! Need to bring paths to common point in real time

Need path length *compensated* to better than *c*/bandwidth

Need path length *stabilized* to better than λ

Longer-Baseline Telescopes Using Quantum Repeaters

PRL 2012

Seminal work in the field

Very interesting

Not feasible with current quantum technology

Cost? Scale?

Longer-Baseline Telescopes Using Quantum Repeaters

PRL 2012

Seminal work in the field

Very interesting

Not feasible with current quantum technology

Cost? Scale?

Here comes BNL to the rescue!

Two-photon amplitude interferometry for precision astrometry The Open Journal of Astrophysics 2022

No need for connection between base stations

Enable long distance baseline

Many great impacts on Astrophysics and Cosmology

Gravitational Wave detection

The Open Journal of Astrophysics Published in November 2022

TWO-PHOTON AMPLITUDE INTERFEROMETRY FOR PRECISION ASTROMETRY Paul Stankus, Andrei Nomerotski, Anze Slosar, and Stephen Vintskevich

SPAD and SNSPD readout

Proof-of-principle demonstration (2022)

 $P(cg) = P(dh) = (1/8)(1 + \cos(\delta_1 - \delta_2)).$ $P(ch) = P(dg) = (1/8)(1 - \cos(\delta_1 - \delta_2))$

input 2 output 2 shifter 2 فبعدا output 1 output 3 shifter 1 \blacksquare input 1 output 4

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

HBT peaks

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

Phase Oscillations

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

Phase Oscillations

Visibility

Towards Quantum Telescopes: Demonstration of a Two-Photon Interferometer for Quantum-Assisted Astronomy

arXiv:2301.07042

Expanding the tool box

$+$

Spectral binning

LinoSPAD2: linear SPAD array

- 512 x 1 pixels
- 24 x 24 micron pixels
- Max PDE (with microlenses) ~ 30%

Close-up of SPADs

Spectrometer with LinoSPAD2 Used Ar lamp coupled to SM fiber

Fast spectrometer near the Heisenberg limit with direct measurement of time and frequency for multiple single photons

arXiv:2304.11999

Benchmark

Heisenberg $\Delta E \Delta t \geq \frac{h}{2}$

Our experiment $(\Delta E \Delta t)/(\hbar/2) \approx 10$

We started testing with starlight on nights!!!!

rakelabra@bnl.gov

