Brookhaven National Laboratory

Quantum Astrometry

Raphael Akel Abrahao Department of Physics Aug 25 2023

- 1. Introduce myself
- 3. Quantum Astrometry
 - A. Theory
 - B. Proof-of-principle demonstration
 - C. Spectrometer

2. An example of how quantum optics improves imaging

Undergrad and Master's Electrical Engineering

Spectral Analysis of five times ionized xenon

Atomic spectroscopy → Astronomy

PhD

Quantum Optics and Quantum Information

PostDoc

uOttawa

Brookhaven National Laboratory

I joined BNL in October 2022

Example: how quantum optics can improve spatial resolution of far away objects?

PHYSICAL REVIEW LETTERS 123, 143604 (2019)

Optimal Imaging of Remote Bodies Using Quantum Detectors

L. A. Howard,¹ G. G. Gillett,¹ M. E. Pearce,² R. A. Abrahao,¹ T. J. Weinhold,¹ P. Kok,² and A. G. White¹ ¹Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, 4072 Brisbane, Australia ²Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

Rayleigh, Abbe, and Sparrow limits

smallest resolvable feature (laterally)

Resolved

Rayleigh Limit

Not Resolved

$$d = \frac{k}{2} \frac{\lambda}{n \sin \theta} = \frac{k}{2} \frac{\lambda}{NA}$$

k = 1.22k = 1k = 0.94RayleighAbbeSparrow

Circumventing the Rayleigh-Abbe limits

super-resolution techniques: exploit physical structure of the object

Rust, et al., Nature Methods **3**, 793 (2006) Betzig, et al., Science **313**, 1642 (2006) Fernández-Suárez et al., Nature Reviews Mol. Cell Bio. 9, 929 (2008)

Circumventing the Rayleigh-Abbe limits

super-resolution techniques: exploit physical structure of the object

Rust, et al., Nature Methods **3**, 793 (2006) Betzig, et al., Science **313**, 1642 (2006) Fernández-Suárez et al., Nature Reviews Mol. Cell Bio. 9, 929 (2008)

object illumination with entangled states of light

- D'Angelo, et al., PRL 87, 777 (2001)
- Lemos, et al., Nature **512**, 409 (2014)
- Slussarenko, Nature Photonics 11, 700 (2017)

Circumventing the Rayleigh-Abbe limits

super-resolution techniques: exploit physical structure of the object

Rust, et al., Nature Methods 3, 793 (2006) Betzig, et al., Science **313**, 1642 (2006) Fernández-Suárez et al., Nature Reviews Mol. Cell Bio. 9, 929 (2008)

object illumination with entangled states of light

D'Angelo, et al., PRL 87, 777 (2001) Lemos, et al., Nature 512, 409 (2014)

Complex degree of coherence

van Cittert-Zernike theorem relates the CDC to the source distribution via a 2D Fourier transform

Measuring the CDC: Traditional method Hanbury Brown — Twiss effect

Fano, American Journal of Physics 29, 539 (1961) Glauber, Physical Review Letters 10, 84 (1963)

two paths for light to go from atoms to detectors amplitudes of the two paths interfere

Measuring the CDC: Count method Now add a 50% beamsplitter

- if one detector fires, which atom did it come from?
 - amplitudes of the two paths interfere
 - to see interference, add variable phase

Measuring the CDC: Count method Now let two photons be emitted from ... somewhere

atoms

 $|20\rangle + e^{i\phi} |02\rangle$

top detector can count two photons

Measuring the CDC: Count method Now let two photons be emitted from ... somewhere

nonclassical interference: phase super-resolution

each detector can count one photon

Check with coherent source

Probability x Applied Phase

Now with pseudothermal light 3 Methods:

Count: variable phase + photon-number resolution

Traditional: NO variable phase (subset of Count)

Click: variable phase, but NO photon-number resolution (click/ no click)

Incoherent source: traditonal scheme $\gamma(\mathbf{r}_1, \mathbf{r}_2) = |\gamma| e^{i\phi}$

 $\gamma = 0.20 \pm 0.16$

 $\phi = 4.50 \pm 1.0$

Incoherent source: count scheme

Incoherent source: click scheme

what if we don't count photons?

Click vs count schemes

Quantum Astronomy

Black hole in the center of M87 imaged at 1.3mm Achieved by radio interferometry with ~10000 km baselines

sensitive to features on angular scale

 $\Delta \theta \sim - \frac{\lambda}{2}$

2019 ApJL 875

Radio $\bar{n} \gg 1$

Can record entire waveform, over some band, separately at each receiver station and interfere later offline

One photon at a time! Need to bring paths to common point in real time

 $\frac{\textbf{Need}}{c} \text{ path length } compensated \text{ to better than} \\ c/\text{bandwidth}$

Need path length *stabilized* to better than λ

Longer-Baseline Telescopes Using Quantum Repeaters

PRL 2012

Quantum Astronomy

Seminal work in the field

Very interesting

Not feasible with current quantum technology

Cost? Scale?

Longer-Baseline Telescopes Using Quantum Repeaters

PRL 2012

Quantum Astronomy

Seminal work in the field

Very interesting

Not feasible with current quantum technold

Cost? Scale?

Here comes BNL to the rescue!

Quantum Astronomy

No need for connection between base stations

Enable long distance baseline

Many great impacts on Astrophysics and Cosmology

Gravitational Wave detection

Two-photon amplitude interferometry for precision astrometry The Open Journal of Astrophysics 2022

TWO-PHOTON AMPLITUDE INTERFEROMETRY FOR PRECISION ASTROMETRY Paul Stankus, Andrei Nomerotski, Anze Slosar, and Stephen Vintskevich

The Open Journal of Astrophysics Published in November 2022

Proof-of-principle demonstration (2022)

SPAD and SNSPD readout

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

HBT peaks

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

Phase Oscillations

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

Phase Oscillations

Visibility

arXiv:2301.07042

Towards Quantum Telescopes: Demonstration of a Two-Photon Interferometer for Quantum-Assisted Astronomy

Expanding the tool box

╉

Spectral binning

LinoSPAD2: linear SPAD array

- 512 x 1 pixels
- 24 x 24 micron pixels
- Max PDE (with microlenses) ~ 30%

Close-up of SPADs

Spectrometer with LinoSPAD2 Used Ar lamp coupled to SM fiber

Benchmark

Heisenberg $\Delta E \Delta t \geq \frac{h}{2}$

Our experiment $(\Delta E \Delta t)/(\hbar/2) \approx 10$

Fast spectrometer near the Heisenberg limit with direct measurement of time and frequency for multiple single photons

arXiv:2304.11999

We started testing with starlight on nights!!!!

rakelabra@bnl.gov

