Black Holes as Transducers for Ultralight Bosons

Yifan Chen Niels Bohr International Academy yifan.chen@nbi.ku.dk

17 August 2023 Brookhaven HET Seminar, online

Outlines

Introduction to Ultralight Bosons and Superradiance

Probing Ultralight Bosons with Event Horizon Telescope

Black Holes as Neutrino Factories

Ultralight Bosons

$$-rac{1}{2}
abla^{\mu}a
abla_{\mu}a-rac{1}{4}B^{\mu
u}B_{\mu
u}+\mathcal{L}_{\mathrm{EH}}(H)-V(\Psi),\quad \Psi=a,\phi,B^{\mu} ext{ and } H^{\mu
u}.$$

- Axion: hypothetical pseudoscalar motivated by strong CP problem.
- Prediction from fundamental theories with extra dimensions:

e.g.
$$g^{MN}(5D) \to g^{\mu\nu}(4D) + B^{\mu}(4D)$$
, $B^{M}(5D) \to B^{\mu}(4D) + a(4D)$.
String axiverse/photiverse: logarithmic mass window, $m_{\Psi} \propto e^{-V_{6D}}$.

▶ Coherent wave dark matter candidates when $m_{\Psi} < 1$ eV:

$$\Psi(x^{\mu}) \simeq \Psi_0(\mathbf{x}) \cos \omega t; \qquad \Psi_0 \simeq \frac{\sqrt{
ho}}{m_{\Psi}}; \qquad \omega \simeq m_{\Psi}.$$

Superradiant Gravitational Atoms

Gravitational Atom between BH and axion cloud:

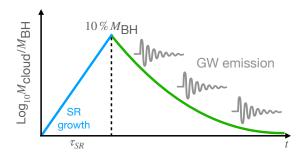
BL coordinate :
$$\Psi^{GA}(x^{\mu}) = e^{-i\omega t} e^{im\phi} S_{lm}(\theta) R_{lm}(r), \qquad \omega \simeq m_{\Psi} + i\Gamma.$$

Superradiance [Penrose, Zeldovichi, Starobinsky, Damour et al, Brito et al review]:
 boson cloud exponentially extracting BH rotation energy when

Compton wavelength
$$\lambda_c \simeq {\rm gravitational\ radius\ } r_g.$$
 $m_\Psi \sim 10^{-21}\,{\rm eV} \leftrightarrow M_{\rm BH} \sim 10^9 M_\odot.$

• $\Psi_{\rm max}^{\rm GA} \equiv \Psi_0$ approaches $M_{\rm pl}$ when $M_{\rm cloud} \leq 10\% \, M_{\rm BH}$:

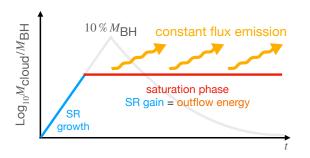
$$\frac{\mathit{M}_{cloud}}{\mathit{M}_{BH}} \approx \left\{ \begin{array}{l} 0.5\% \, \left(\frac{\Psi_0}{10^{16} \, \mathrm{GeV}}\right)^2 \, \left(\frac{0.4}{\alpha}\right)^4 \, \, \text{for scalar,} \\ 0.8\% \, \left(\frac{\Psi_0}{10^{17} \, \mathrm{GeV}}\right)^2 \, \left(\frac{0.4}{\alpha}\right)^4 \, \, \text{for vector,} \end{array} \right.$$


 $\alpha \equiv G_N M_{\rm BH} m_{\Psi}$ gravitational fine-structure constant

Black holes are powerful transducers for ultralight bosons.

Superradiance for Boson with Negligible Interaction

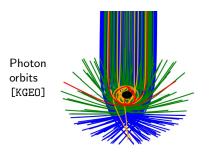
 For bosons with negligible interaction, superradiance stops after BH spins down and M_{cloud} takes up to 10%M_{BH}.

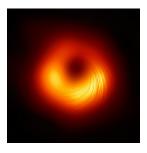


- High spin excludes boson mass in SR range with reasonable τ_{BH}.
 [Arvanitaki, Brito, Davoudiasl, Denton, Stott, Unal, Saha et al]
- GW from boson annihilation and transition slowly decreases M_{cloud}. [Yoshino, Brito, Isi, Siemonsen, Sun, Palomba, Zhu, Tsukada, Yuan, LVK et al]

Superradiant Saturating Cloud

► Self interaction or matter interaction triggers cloud energy leakage, balancing SR, invalidating spin constraints.




- Two examples for axion:
 - ullet lonized axion waves for $\Psi_0 \sim f_a < 10^{16}\, {
 m GeV}$ [Yoshino et al 12', Baryakht et al 20'].
 - Parametric γ production for $g_{a\gamma}\Psi_0\sim 1$ [Rosa et al 17', Spieksma et al 23'].
- ► Particle creation in strong field frontier.

EHT and ngEHT for new physics

Event Horizon Telescope: best-ever spatial resolution from VLBI.

Stokes Q, U **EVPA** $\chi \equiv \arg(Q + i \ U)/2$ [EHT 21']

Bound solutions of Kerr null geodesics: photons propagating multiple times around BH enhance intensity on the image plane.

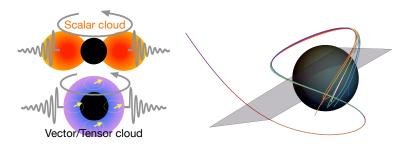
- \rightarrow Precise test of general relativity.
 - ► Astrometry for new physics?

Linear polarization from synchrotron radiation reveals magnetic field structure.

Four days' observations **show slight difference**.

New interactions?

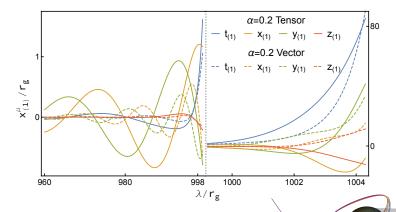
Photon Ring Astrometry


for Superradiant Clouds

based on arXiv:2211.03794, Phys. Rev. Lett. **130** (2023) no.11, 111401

YC, Xiao Xue, Richard Brito, Vitor Cardoso.

Gravitational Atom-induced Geodesics Deflections

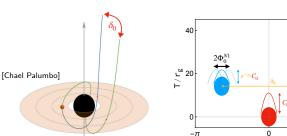

Superradiant clouds generate local oscillatory metric perturbations $g_{\mu\nu} \simeq g_{\mu\nu}^{\rm K} + \epsilon h_{\mu\nu}$ that deflect geodesics $x^{\mu} \simeq x_{(0)}^{\mu} + \epsilon x_{(1)}^{\mu}$:

- Scalar cloud mainly causes time delay.
- Polarized vector or tensor cloud contribute to both time delay and spatial deflection.

Gravitational Atom-induced Geodesics Deflections

Backward ray-tracing:

Two phases of evolution:


- Perturbative generation of oscillatory deviations;
- Photon ring instability leads to exponential growth of the oscillatory deviations between two sequential crossing the equatorial plane.

Astrometrical Photon Ring Autocorrelations

A photon pair executing different half orbits number N:

Intensity fluctuation correlation: $\langle \Delta I(t,\varphi)\Delta I(t+T,\varphi+\Phi)\rangle$, peaks at $T\approx N\tau_0$ and $\Phi\approx N\delta_0$ [Hadar, Johnson, Lupsasca, Wong 20'].

Equatorial plane emissions

Observables: $\Delta \Phi^N = \Phi_0^N \cos(\omega t + \delta)$ for N = 1 and 2.

▶ Probe M_{cloud}/M_{BH} to 10^{-3} for vector and 10^{-7} for tensor.

π

Hunting Axions with Event Horizon Telescope

Polarimetric Measurements

based on

arxiv: 1905.02213, Phys. Rev. Lett. **124** (2020) no.6, 061102,

arxiv: 2105.04572, Nature Astron. **6** (2022) no.5, 592-598,

arxiv: 2208.05724, JCAP **09** (2022), 073.

YC, Chunlong Li, Yuxin Liu, Ru-Sen Lu, Yosuke Mizuno, Jing Shu, Xiao Xue, Qiang Yuan, Yue Zhao, Zihan Zhou.

Axion Cloud Induced Birefringence

Axion-induced Birefringence: rotation of linear polarization:

$$\mathbf{g}_{\mathsf{a}\gamma}\mathbf{a}\mathbf{F}_{\mu\nu}\tilde{\mathbf{F}}^{\mu\nu}/\mathbf{2} o \Delta\chi = g_{\mathsf{a}\gamma}[\mathbf{a}(t_{\mathrm{obs}},\mathbf{x}_{\mathrm{obs}}) - \mathbf{a}(t_{\mathrm{emit}},\mathbf{x}_{\mathrm{emit}})].$$

Extended sources, plasma and curved space-time effects?

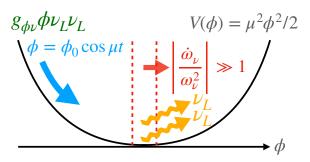
 $\textbf{Covariant radiative transfer} \; [\texttt{IPOLE simulation}]$ with an accretion flow model outside SMBH:

Stringent Constraints on Axion-Photon Coupling

April 5 April 11 Uncertainty of azimuthal EVPA in [EHT 21']: (χ) (deg.) \rightarrow axion photon coupling $c \equiv 2\pi g_{a\gamma} f_{a}$: α [EHT 21'] 0.45 0.1 0.25 a₁=0.8 Astrophysical 4 Constraints on g_{av} 3 M87 * 2 $f_a = 10^{15} \, [\text{GeV}]$ $\log_{10}(c)$ EHT 17' 4 days 0 -1-2 -20 -21 -19 $log_{10}(m_a/[eV])$

Next-generation EHT is expected to significantly increase sensitivity.

Black Holes as


Neutrino Factories

based on arXiv:2308.00741

YC, Xiao Xue, Vitor Cardoso.

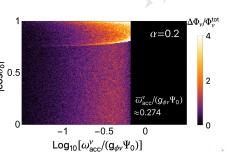
Particle Production from Oscillating Background

Neutrino coupled to majoron: $\omega_{\nu}^2 = k^2 + m_{\text{eff}}^2$, $m_{\text{eff}} = m_{\nu} + g_{\phi\nu}\phi_0 \cos \mu t$.

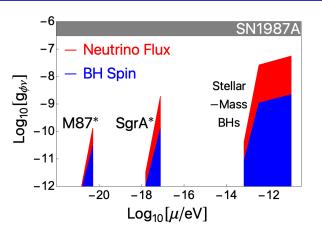
- Non-adiabatic condition $|\dot{\omega}_{\nu}/\omega_{\nu}^2|\gg 1$ is satisfied for $k< k_*=\sqrt{g_{\phi\nu}\phi_0\mu}/2$ when $m_{\rm eff}$ crosses zero.
- Fermi sphere $\sim k_*$ is pumped for every $t=\pi/\mu$ [Greene Kofman 98' 00']. Production rate: $\Gamma_{\phi\nu} \approx (g_{\phi\nu}\phi_0)^{3/2}\mu^{5/2}/(48\pi^3)$.
- Strong field frontier: similar to preheating and strong field QED.

Neutrino Acceleration from Boson Cloud

► Neutrino propagation under majoron cloud background:


$$\frac{\mathrm{d} p_{\nu}^{\alpha}}{\mathrm{d} t} = -\frac{1}{p_{\nu}^{0}} \Gamma_{\kappa\beta}^{\alpha} p_{\nu}^{\kappa} p_{\nu}^{\beta} - \frac{1}{2p_{\nu}^{0}} \nabla^{\alpha} m_{\mathrm{eff}}^{2}$$
. \leftarrow scalar force

Two parts of scalar force:


$$-\vec{\nabla} m_{\text{eff}}^2 \propto \alpha^2 \, \hat{r} - \frac{2 \, r_{\text{g}}}{r \cos(\alpha t - \phi) \sin \theta} \, \hat{n}_{\perp} + \cdots$$

- Outer region: pure radial acceleration.
- Inner region: polar trapping.

- Final momentum: $\bar{\omega}_{\rm acc}^{\nu} \sim g_{\phi\nu} \Psi_0$.
- ► Both spatial and temporal variation are necessary for acceleration.

Spin Measurement and Neutrino Flux

- ▶ High spin excludes region $\Gamma_{\phi\nu} \ll \Gamma_{SR}$.
- Neutrino emission from saturation phase $\Gamma_{\phi\nu}=\Gamma_{SR}$. Point-like sources surpass atmospheric neutrino background.
- ► $M_{\rm BH}$ from M_{\odot} to $10^{10}\,M_{\odot}$ can all be probed.

Other Interactions

Neutrino pair production and acceleration from a vector cloud?

Strict constraints on the coupling.

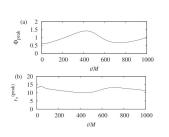
Boosted dark matter from superradiant clouds.

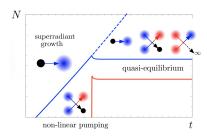
- Multi-messenger observation:
- GW and FM searches for BHs.
- Neutrino and boosted dark matter.

Summary

- Rotating black holes are powerful transducers for ultralight bosons due to superradiance.
- ► Event Horizon Telescope:
 - Photon geodesics deflection from gravitational atoms.
 - Linear polarization rotation from axion cloud.
- Strong field frontier:
 - Parametric particle production and acceleration.
- Multi-messenger correlation:
 - neutrino/dark matter detection \leftrightarrow GW/EM observation.

Thank you!

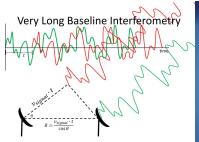

Appendix


Weakly Saturating Axion Cloud

▶ Strong self-interaction region $a^{\rm GA} \simeq f_a$ happens when $f_a < 10^{16}$ GeV:

$$V(a) = m_a^2 f_a^2 \left(1 - \cos \frac{a}{f_a} \right) = \frac{m_a^2 a^2}{2} - \frac{m_a^2 a^4}{24 f_a^2} + ...;$$

▶ A quasi-equilibruim phase where superradiance and non-linear interaction induced emission balance each other with $a_{\max}^{GA} \simeq \mathcal{O}(1) f_a$.



[Yoshino, Kodama 12' 15', Baryakht et al 20']

Event Horizon Telescope: an Earth-sized Telescope

- For single telescope with diameter D, the angular resolution for photon of wavelength λ is around $\frac{\lambda}{D}$;
- VLBI: for multiple radio telescopes, the effective D becomes the maximum separation between the telescopes.

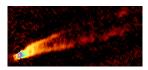
► As good as being able to see

on the moon from the Earth.

Supermassive Black Hole (SMBH) M87* [EHT 19' 21']

Event Horizon Telescope: best-ever spatial resolution from VLBI.

Total intensity *I*



Linear polarization Q, U**EVPA** $\chi \equiv \arg(Q + i \ U)/2$

- First-time: shadow and the ring;
- ▶ Ring size determines $6.5 \times 10^9 M_{\odot}$;
- Polarization map reveals magnetic field structure.
- ► Four days' observations **show slight difference**.

From other observations:

- Nearly extreme Kerr black hole: $a_J > 0.8$;
- ► Almost face-on disk with a 17° inclination angle;
- Rich information under strong gravity, what else can we learn?

Axion Cloud and Birefringence

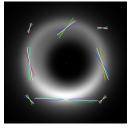
- ▶ **Axion cloud** saturates f_a due to self-interactions:
- $r_g m_a \approx \mathcal{O}(1)$
- $a^{\mathrm{GA}}(x^{\mu}) \simeq R_{11}(\mathbf{x}) \cos\left[m_a t \phi\right] \sin \theta; \qquad a_{\mathrm{max}}^{\mathrm{GA}} \simeq \mathcal{O}(1) f_a; \qquad \omega \simeq m_a.$
- $g_{a\gamma} a F_{u\nu} \tilde{F}^{\mu\nu} \rightarrow \text{achromatic birefringence to EVPA } \chi \equiv \arg(Q + i \ U)/2$:

$${\rm Local\,frame:}\quad \frac{d(Q+i\ U)}{ds}=j_Q+i\ j_U+i\left(\rho_V^{\rm FR}-2g_{a\gamma}\frac{da^{\rm GA}}{ds}\right)\big(Q+i\ U\big).$$

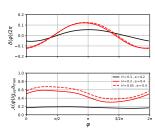
Intensity weighted $\Delta \langle \chi(\varphi) \rangle$

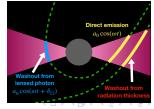
EVPA shift for each photon:

$$\Delta\chi pprox g_{a\gamma} imes a^{
m GA}(x_{
m emit}^{\mu})$$


φ

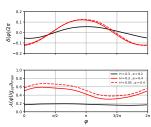
- $ightharpoonup \Delta\langle\chi(\varphi)\rangle$: propagating wave along φ on the sky plane
- BL coordinate: $a^{GA} \propto \cos\left[m_a t \phi\right] \rightarrow \Delta\langle\chi(\varphi)\rangle \propto \mathcal{A}(\varphi)\cos\left[m_a t + \varphi + \delta(\varphi)\right]$.

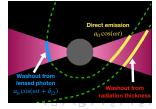

Axion Birefringence for RIAF around M87* (IPOLE simulation)


$$\Delta \langle \chi(\varphi) \rangle = \mathcal{A}(\varphi) \cos[m_a t + \varphi + \delta(\varphi)].$$

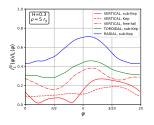
▶ Scan axion mass: $\alpha \equiv r_g m_a \in [0.10, 0.44]$ with period [5, 20] days.

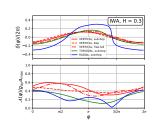
- $\delta(\varphi) \approx -5 \ \alpha \ \sin 17^{\circ} \cos \varphi :$ phase delay at different φ .
- Asymmetry of $\mathcal{A}(\varphi) = \mathcal{O}(1)g_{a\gamma}f_a$: washout from lensed photon with $\delta_{12} = \omega \delta t - \delta \phi$!

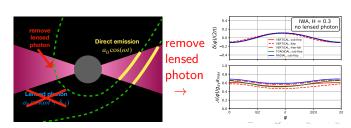

Axion Birefringence for RIAF around M87* (IPOLE simulation)


$$\Delta \langle \chi(\varphi) \rangle = \mathcal{A}(\varphi) \cos[m_a t + \varphi + \delta(\varphi)].$$

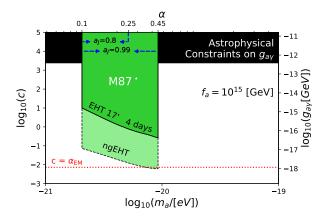
▶ Scan axion mass: $\alpha \equiv r_g m_a \in [0.10, 0.44]$ with period [5, 20] days.


- ▶ $\delta(\varphi) \approx -5 \alpha \sin 17^{\circ} \cos \varphi$:
 phase delay at different φ .
- Asymmetry of $\mathcal{A}(\varphi) = \mathcal{O}(1)g_{a\gamma}f_a$: washout from lensed photon with $\delta_{12} = \omega\delta t - \delta\phi$!




Lensed Photon Washout

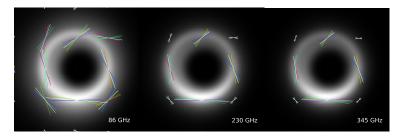
The ratio between linear polarization from lensed photon and direct emissions vary from RIAF models, giving different washout effects.



Universal birefringence signals for direct emission only:

Prospect for next-generation EHT

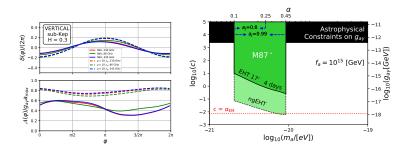
Next-generation EHT is expected to significantly increase sensitivity.


Recent updates:

- Constraints from EVPAs on the whole image.
- ▶ Closure traces for EVPA variations with specific patterns [Broderick et al].

Prospect for next-generation EHT

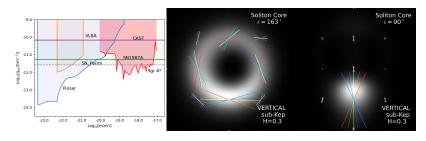
Correlation between Δχ at different radius and frequency.
 At 86 GHz, lensed photon is suppressed due to higher optical thickness.


- Longer and sequential observations.
- Better resolution of EVPA.
- Better understanding of accretion flow and jet. Intrinsic variations of EVPA from GRMHD simulation?

Prospect for next-generation EHT

lacktriangle Correlation between $\Delta\chi$ at different radius and frequency.

At 86 GHz, lensed photon is suppressed due to higher optical thickness.



- ► Longer and sequential observations.
- ▶ Better resolution of EVPA.
- Better understanding of accretion flow and jet. Intrinsic variations of EVPA from GRMHD simulation?

Birefringence from Soliton Core Dark Matter

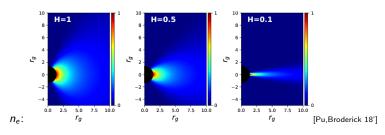
▶ Ultralight axion dark matter forms soliton core in the galaxy center. Quantum pressure balences gravitational interactions $a \sim 10^{10}$ GeV.

- Linearly polarized photon from pulsar. [Liu et al 19' Caputo et al 19']
- ▶ Polarized radiation from **Sgr A***.[Yuan, Xia, YC, Yuan et al 20']
- Coherent signals at each pixel increase the sensitivity.

$$\mathcal{L} = -\frac{1}{4} \textit{F}_{\mu\nu} \textit{F}^{\mu\nu} - \frac{1}{2} \textit{g}_{a\gamma} \textit{a} \textit{F}_{\mu\nu} \tilde{\textit{F}}^{\mu\nu} + \frac{1}{2} \partial^{\mu} \textit{a} \partial_{\mu} \textit{a} - \textit{V(a)}, \label{eq:local_local$$

▶ Chiral dispersions for photons propragating under axion background:

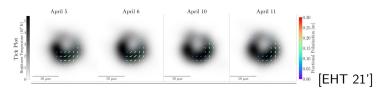
$$\begin{split} [\partial_t^2 - \nabla^2] A_{L,R} = & \ \mp \ 2 g_{a\gamma} \, n^\mu \partial_\mu \text{a k } A_{L,R}, \qquad \omega_{L,R} \sim k \mp g_{a\gamma} \, n^\mu \partial_\mu \text{a.} \\ & n^\mu \text{: unit directional vector} \end{split}$$

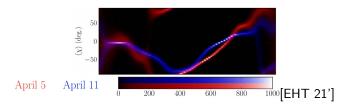

Rotation of electric vector position angle of linear polarization:

$$\begin{array}{lll} \Delta \chi & = & g_{a\gamma} \int_{\rm emit}^{\rm obs} n^{\mu} \partial_{\mu} a \; dl \\ & = & g_{a\gamma} [a(t_{\rm obs}, \mathbf{x}_{\rm obs}) - a(t_{\rm emit}, \mathbf{x}_{\rm emit})]. \end{array}$$

▶ Topological effect for each photon: only $a(x_{\text{emit}}^{\mu})$ and $a(x_{\text{obs}}^{\mu})$ dependent.

Accretion Flow around M87*

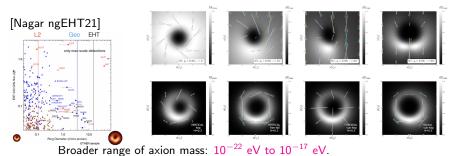

- ▶ EHT polarimetric measurements prefer Magnetically Arrested Disk with vertical \vec{B} around M87*.
- Analytic model: sub-Kep radiatively inefficient accretion flow:


▶ Dimensionless thickness parameter H = 0.05 and 0.3 as benchmark.

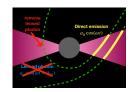
EHT Polarization Data Characterization

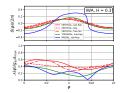
► Four days' polarization map with slight difference on sequential days:

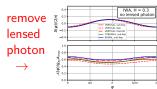
Uncertainty of the azimuthal bin EVPA from polsolve:



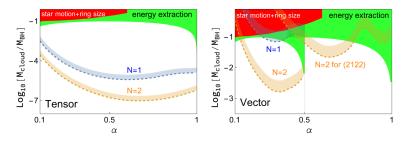
ranging from $\pm 3^{\circ}$ to $\pm 15^{\circ}$ for the bins used.




Landscape of SMBH and Accretion Flow (IPOLE simulation)


► Horizon scale SMBH landscape with nnngEHT (space, L2):

Universal birefringence signals for direct emission only:



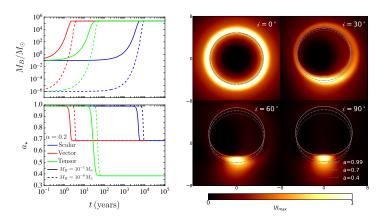
Photon Ring Autocorrelations as Astrometry

Photon ring autocorrelation exclusion criteria: $\Delta \Phi^N > \ell_\phi \approx 4.3^\circ$ or ngEHT's smearing kernel for φ : 10°.

- ► A tensor with linear coupling to stress tensors is more sensitive than a vector with quadratic couplings.
- N = 2 correlation peak can probe large unexplored parameter space of cloud mass.
- Sources with shorter correlation time, e.g., hotspots or pulsars can significantly increase the sensitivity.

Superradiant evolution of

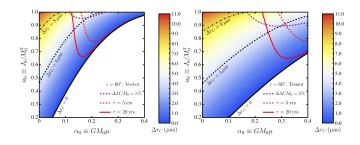
the shadow and photon ring of Sgr A*


based on

arxiv: 2205.06238, Phys. Rev. D 106 (2022) no.4, 043021.

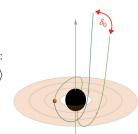
YC, Rittick Roy, Sunny Vagnozzi, and Luca Visinelli.

Superradiant Evolution for Bosons

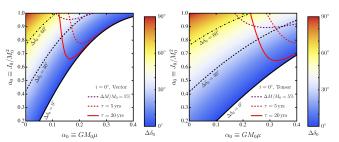

Superradiant evolution for scalar, vector or tensor → spin decreases:

▶ Superradiant timescale $\propto M_{BH}$, and is shorter for vector or tensor due to l=0 and j=m=1 or 2 from intrinsic spin. $\sim \mathcal{O}(10)$ yrs for vector or tensor outside SgrA*.

Large Inclination Angle: Shadow Drift



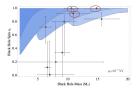
- ▶ Center of the shadow contour **drifts** $\sim \mathcal{O}(1)r_g$ once the spin decreases. The drift is more manifest at large inclination angles.
- Resolution to the shadow center benefits from long observation time
 O(1) yr.


Low Inclination Angle: Azimuthal Lapse

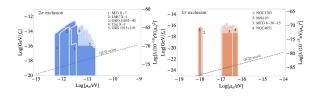
At low inclination angles, photon ring autocorrelation for intensity fluctuations: $\mathcal{C}(T,\varphi) \equiv \iint \mathrm{d}r \mathrm{d}r' r \, r' \, \langle \Delta I(t,r,\phi) \Delta I(t+T,r',\phi+\varphi) \rangle$ peaks at $T=\tau_0$ and $\varphi=\delta_0$, where δ_0 is the azimuthal lapse.

• δ_0 is sensitive to **spin evolution** due to frame dragging.

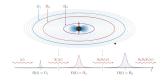
[Chael Palumbo]



Fate of Superradiance


Axion cloud can't keep growing exponentially. What's the fate of it?

- **Self interaction** of axion becomes important for $f_a < 10^{16}$ GeV. [Yoshino, Kodama 12', Baryakht et al 20']
- ▶ Black hole **spins down** until the superradiance condition is violated for $f_a > 10^{16}$ GeV. [Arvanitakia, Dubovsky 10']
- ► Formation of a **binary system** leads to the decay/transition of the bound state. [Chia et al 18']
- ► Electromagnetic blast for strong (large field value) axion-photon coupling. [Boskovic et al 18']


Black Hole Spin Measurements [Arvanitakia et al 10' 14']

► Comparing the timescale between the superradiance and BH accretion, a BH with large spin can typically exclude axion with $f_a > 10^{16}$ GeV.

Gravitational Collider [Chia et al 18']

- Resonant transition from one bound state to another happens when orbital frequency Ω matches the energy gap.
- ▶ Due to the GW emission of the binary system, $\Omega(t)$ slowly increases and scan the spectrum.
- Orbits could float or shrink dependent on the transition.