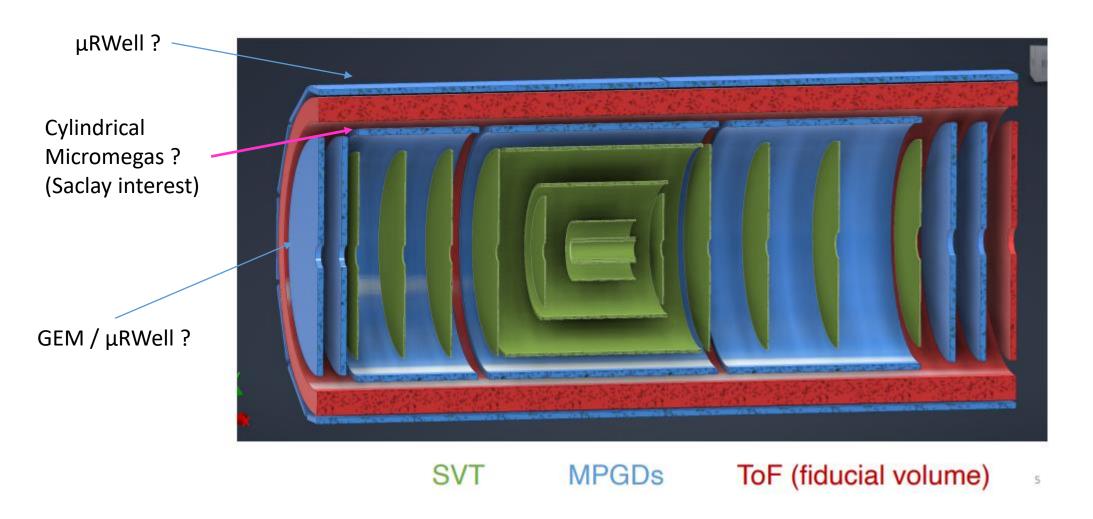


ePIC CyMBaL tracker environment

Cylindric Micromegas Barrel Layer

Irakli Mandjavidze

Irfu, CEA Saclay Gif-sur-Yvette, 91191 France


Space

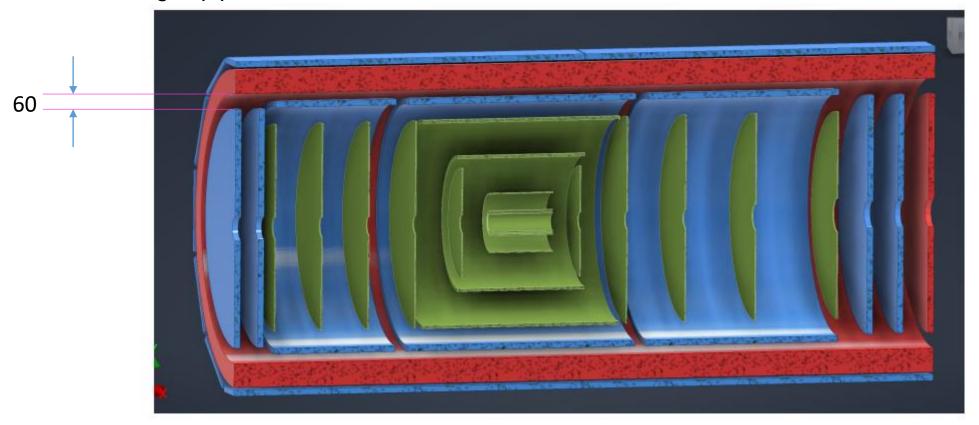
Recent update of ePIC tracking configuration

• ePIC Tracking Working Group Meeting (15 juin 2023) - Indico (bnl.gov)



Recent update of ePIC tracking configuration

• ePIC Tracking Working Group Meeting (15 juin 2023) - Indico (bnl.gov)


- A solid base for detector and readout definition
 - → Need to achieve quickly the same maturity as for Athena CyMBaL tracker
 - https://indico.bnl.gov/event/13103/contributions/55234/attachments/37448/61701/210930_EicAthena_Cymbal_v3.pdf

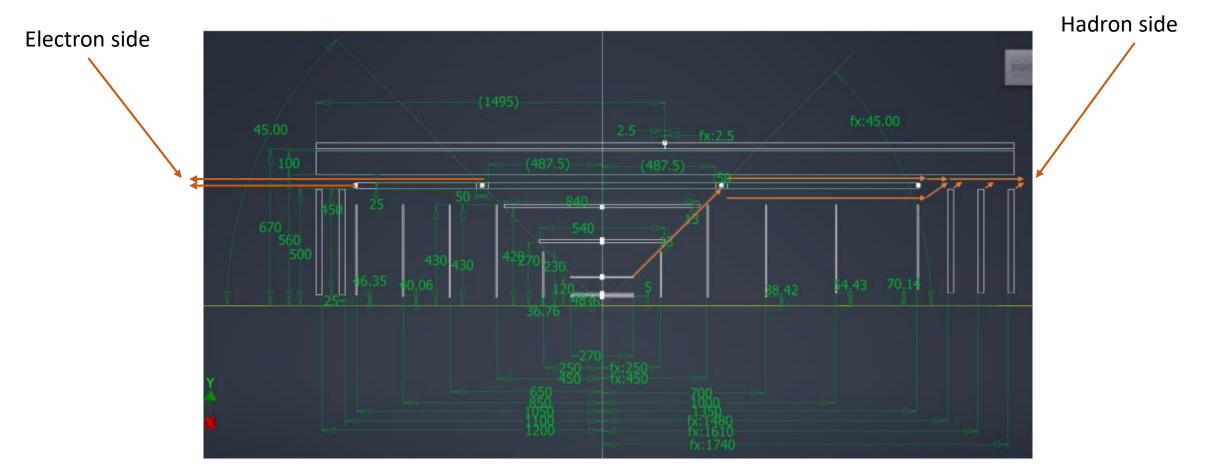
Spatial constraints for inner barrel cylindrical tracker

- Space is stringent: 6 cm
 - → Detectors, gas pipes, HV cables

SVT

MPGDs

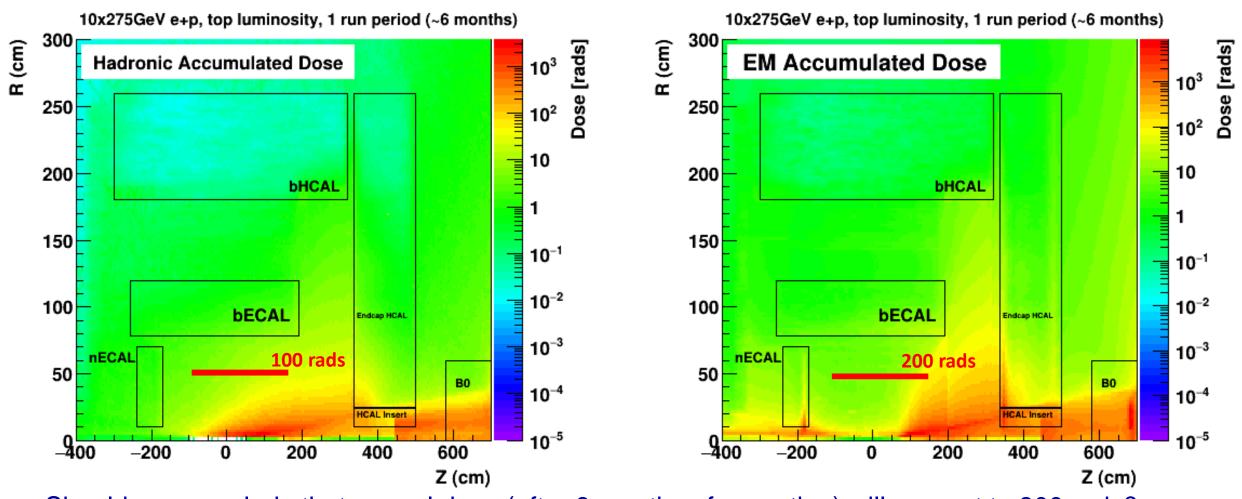
ToF (fiducial volume)


- → What about on-detector frontend electronics:
 - FEBs + LV distribution + RDO interface cabling + cooling
 - Will it fit within the space and material budget envelopes

Where to get information about available space for electronics?

Assuming off-detector FEB for space and material budget restrictions

- Place FEBs (hence corresponding RDOs) on both sides: hadron and electron
 - → Detector cable length ~2 m
- FEB and RDO: magnetic field?

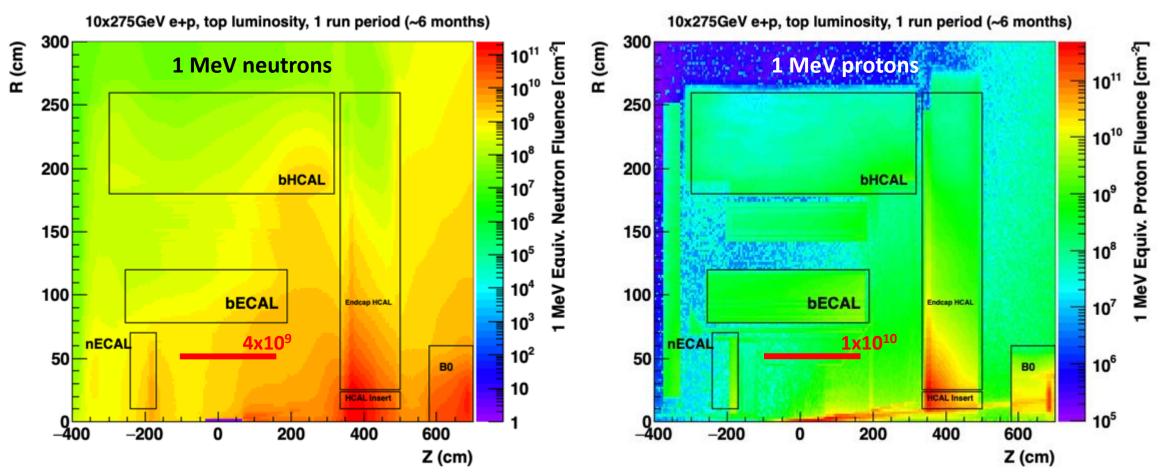


Radiation

Total ionization dose (TID) due to e + p events

- Should one conclude that annual dose (after 6 months of operation) will amount to 300 rads?
 - \rightarrow *i.e.* TID of 3 krad over 10 years
 - → Is the space-grade radiation tolerance enough for electronics?

Total ionization dose: TID

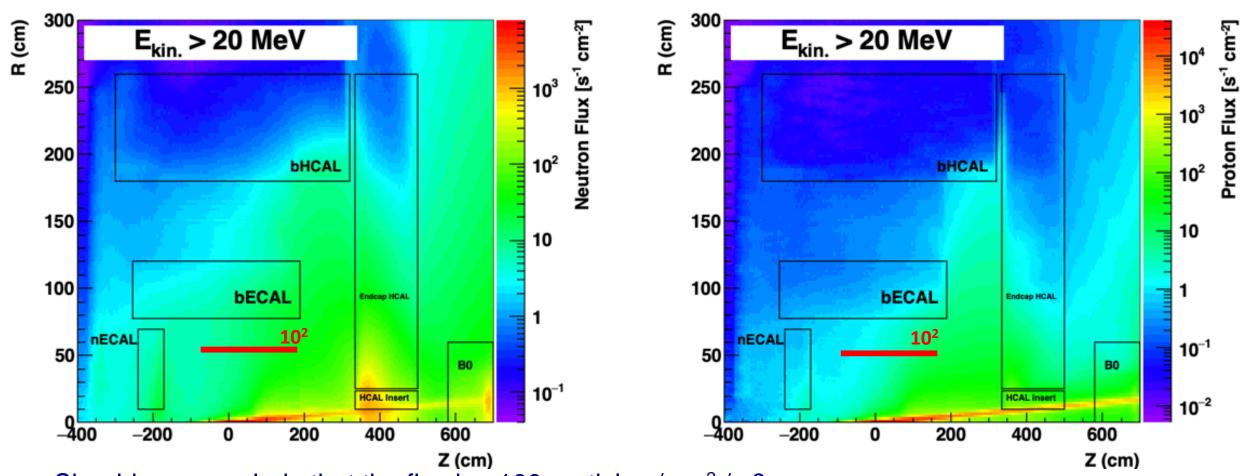

Radiation sources	EM rad / year	Hadron rad / year	Total rad / year
10 x 275 GeV e + p	100	200	300
275 GeV p beam + gas	2	10	12
10 GeV e beam + gas	500		500

- Should one conclude that annual dose (after 6 months of operation) will be less than 1 krad?
 - \rightarrow *i.e.* TID of 10 krad over 10 years
 - → Is the space-grade radiation tolerance enough for electronics?

1 MeV equivalent neutron / proton fluences due to e + p events

- Should one conclude that annual fluence (after 6 months of operation) will be < 1 x 10¹⁰ n_{eq}/cm²?
 - \rightarrow i.e. 1 x 10¹¹ n_{eq}/cm² over 10 years
 - \rightarrow In the CMS barrel EM calorimeter region we qualify ASICs to stand fluences of 10¹³ 10¹⁴ n_{eq}/cm²

1 MeV equivalent neutron / proton fluences


Radiation sources	Neutron / cm² / year	Proton / cm² / year
10 x 275 GeV e + p	4 x 10 ⁹	1 x 10 ¹⁰
275 GeV p beam + gas	5 x 10 ⁸	1 x 10 ⁹

- Should one conclude that annual fluence (after 6 months of operation) will be $\sim 1 \times 10^{10} \, n_{eq}/cm^2$?
 - \rightarrow i.e. 1 x 10¹¹ n_{eq}/cm² over 10 years
 - ightarrow In the CMS we qualify ASICs to stand much higher fluences
 - 10¹³ 10¹⁴ n_{ea}/cm² in barrel EM calorimeter region
 - 10¹⁵ 10¹⁶ n_{eq}/cm² in endcap high granularity calorimeter region
 - → Need to check ratings of commercial components

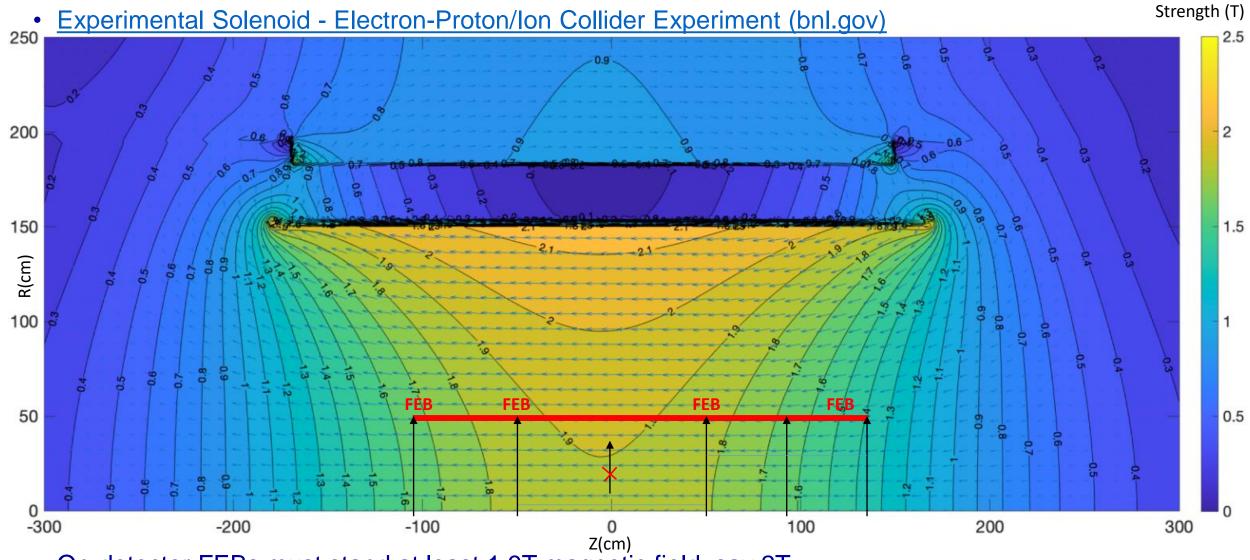
>20 MeV neutron / proton fluxes due to e + p events

- Should one conclude that the flux is ~100 particles / cm² / s?
 - → In the CMS barrel timing layer we estimate SET at fluxes of 10⁵ particles / cm² / s

>20 MeV neutron / proton fluxes

Radiation sources	Neutron / cm ² / s	Proton / cm ² / s
10 x 275 GeV e + p	100	100
275 GeV p beam + gas	1	<<1

- Should we estimate SET probabilities for 100 particle cm² / s fluxes ?
 - → In the CMS the figures of merit are
 - 10⁵ particles / cm² / s in barrel timing layer
 - Mean of 2 x 10⁶ particles / cm² /s in endcap high granularity calorimeter region
 - → Need to check ratings of commercial components



Magnetic field

2T solenoid magnetic field map



- On-detector FEBs must stand at least 1.9T magnetic field, say 2T
 - → 1.7T solenoid: tolerance of at least 1.6T

2T solenoid magnetic field map

- Off-detector FEB reach zone with 2 m micro-coax cables shown approximately lower field
 - → 1.7T solenoid: probably < 1T tolerance for off-detector FEBs

FEB components

FEB location: on-detector

FPGA

Digital over copper Few meters over twinax cables

Within detector or cavern **RDO** FPGA E/O

Low restriction area No restriction on length **DAM FDM**

Parallel optic trunk

FDM – fiber distribution module

(patch panels, etc.)

RDO close to FEB

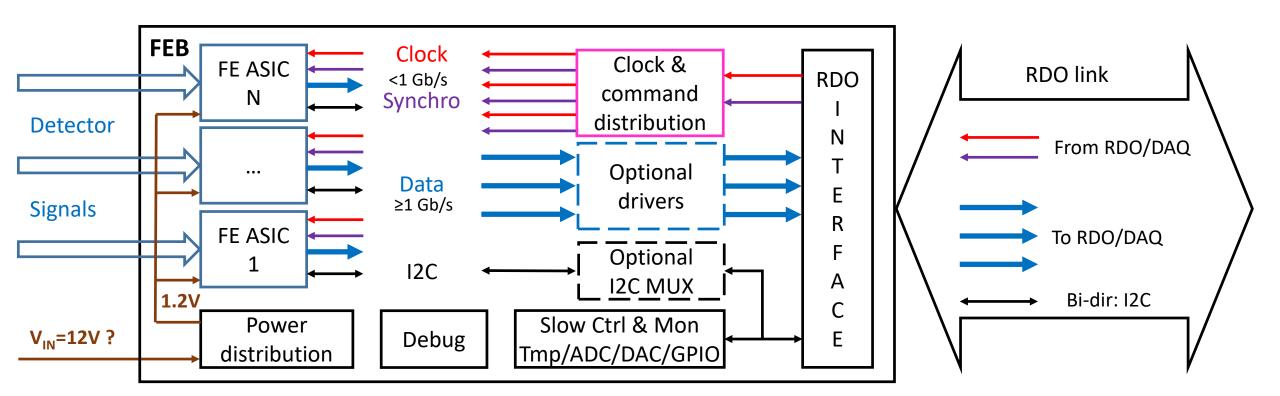
- → Moderate radiation environment, space & power stringent
- RDO ← FEB
 - → Clock & synch commands on FEB fan-out or multi-drop
 - \rightarrow I2C daisy chain
 - \rightarrow Test
 - → Data single or several uplinks per ASIC

- → No on-board intelligence, no board-level data aggregation
- → High fidelity fan-out can be the Rafael ASIC or a development based on EICGENR&D_2022_06
 - Used solely for clocks and commands; not for I2C
- On detector FEB: best option for S/N
 - → Difficult for all the rest

Serial multi-gigabit

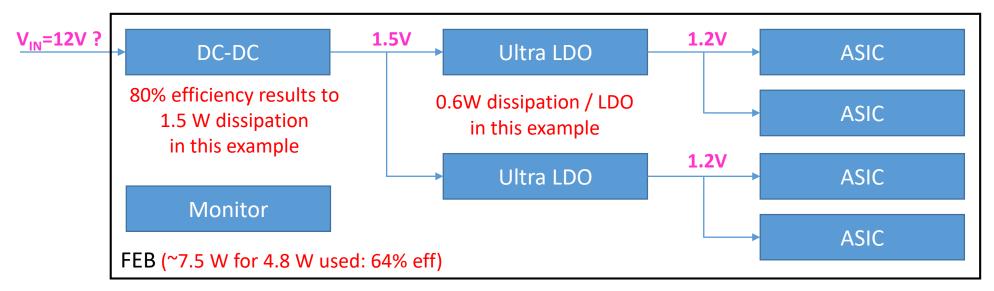
over optical fiber

Rafael


65nm PLI

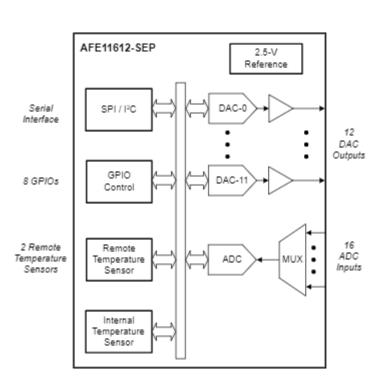
A typical digital FEB with no on-board intelligence

- Number of ASICs per FEB to be adapted according to detector modularity and space constraints
 - → Possibility to have a separate PCB with an ASIC or a small number of ASICs can be envisaged
 - Needs a clock/synchro pair, a data line per ASIC, a common I2C and power
 - Price to pay for space limitation: multiplication of boards and interconnects


- For a possible MPGD data collection protocol see for example:
 - → https://indico.bnl.gov/event/18118/contributions/72179/attachments/45781/77366/221221_MpgdDataCol_IM.pdf

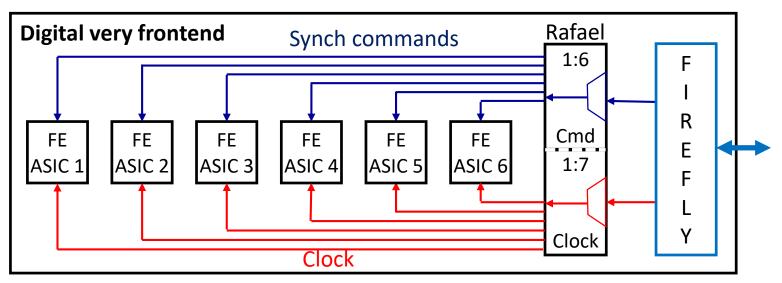
FEB powering within magnetic field

- Assuming 64-channel Salsa with ~1 W power consumption @ 1.2 V
 - → For simplicity, 1 A per ASIC
- Clean power will require a radiation hardened ultra LDO linear regulator
 - → e.g. commercial TPS7H1101A-SP from TI https://www.ti.com/product/TPS7H1101A-SP space grade
 - → e.g. community LDO used for CMS HgCal frontends https://cds.cern.ch/record/2797683 HL LHC grade
 - → Or whatever other subsystems propose
- Power distribution requires magnetic field tolerant high efficiency DC/DC regulators
 - → e.g. community bPOL12V from CERN HL LHC grade and 4T tolerance
 - Microsoft Word bPOL12V V6 datasheet V1.6.docx (cern.ch)


- Question: is there a common effort for LV distribution?
 - → A centralized group taking care to provide V_{IN} in a "uniform" way wherever possible
 - → And in case CERN components will be the choice, for their inventory and procurement

FEB monitoring

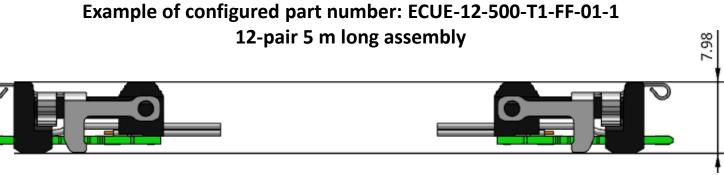
- FEB is deeply embedded complex system repeated multiple times
 - → Needs at least health monitoring
- Commercial space grade candidate from TI: AFE11612-SEP
 - → https://www.ti.com/product/AFE11612-SEP#tech-docs
 - → 16 inputs towards a 12-bit ADC
 - For on board generated voltages and current measurements
 - → 12 outputs from 12-bit DACs
 - For on board reference voltage settings
 - → Up to 8 GPIO
 - For test pulse generation or non-I2C component settings
 - → Up to 4 external temperature sensors
 - → I2C interface
 - → Might be too power hungry
 - Detailed information requested
 - Evaluation board exists
 - → Check if something lighter does not exists

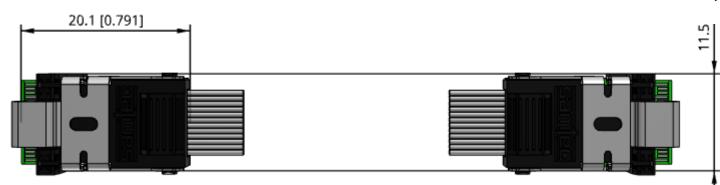


Clock and fast command distribution example

- Rafael Radiation-hArd Fan-out Asic for Experiments at LHC developed at Irfu, CEA Saclay
 - \rightarrow 3 inputs and 13 outputs
 - → CLPS signaling: 0.6 V CM voltage; 200-400 mV differential swing
 - Programmable drive and emphasis
 - → Single buffer: any input to 13 outputs
 - → Double buffer
 - Input 1 to 6 outputs
 - Input 2 to 7 outputs
 - → Up to 400 MHz and beyond
 - → Low additive jitter of < 2 ps
 - → HL LHC-level TID, neutron, SEU
 - → 130 nm technology
 - Possibility to embed a PLL
 - If no jitter cleaner PLL in ASICs

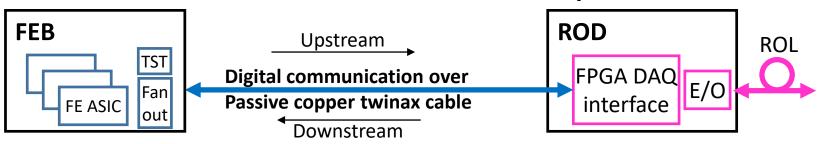
- Possibility to design a new fan-out ASIC based on PRISME IP
 - → on-going development under EICGENR&D_2022_06 call
 - https://www.jlab.org/sites/default/files/eic_rd_prgm/files/2022_Proposals/EIC_RD_Proposal_DigiPLL_vfinal_EICGENRandD2022_06.pdf
 - Jitter cleaner clock synthesizer PLL with phase adjustment
 - To be used in Salsa



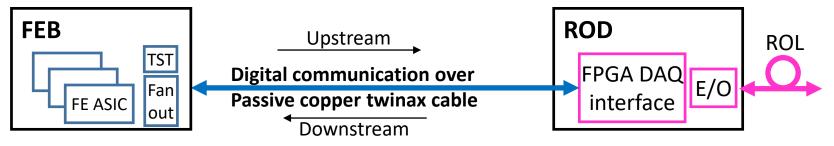

RDO interface: passive twinax copper Samtec FireFly

- https://www.samtec.com/products/ecue
- https://suddendocs.samtec.com/catalog_english/ecue.pdf
- Configurable assembly
 - \rightarrow 8 or 12 pairs
 - \rightarrow up to 10 m
 - → Low profile fits stringent space
 - Only 8 mm high
- Impressive signal integrity figures
 - → Qualified for 10-50 Gbit/s speeds

- Max length for O(1 Gbit/s) speed?
 - → Are extra drivers needed?
- Rigidity, weight?
- Flammability?
 - → Contact Samtec technical service
 - → R&D on data transmission and on clock / synchronous command distribution?
 - Intention to validate with the PRISME test bench



FEB-RDO link MPGD example


- 512-channel on-detector FEB
 - → 8 64-channel FE ASICs (e.g. future SALSA) with
 - 1 Gbit/s output data link
 - Unique system clock
 - On-board 1-to-8 fan-out
 - Synchronous command encoding trigger
 - On-board 1-to-8 fan-out
 - → Bi-directional I2C SDA + unidirectional I2C SDC
 - Chained
 - → Common on-onboard test pulse logic

- Off-detector on-detector interface
 - → 3 downstream lines:
 - Clock, command, I2C SDC
 - → 1 bi-directional I2C SDA line
 - → 8 upstream lines
 - 8 data links
 - → Fits single 12-pair Samtec FireFly copper cable
 - Test sequence may be initiated by I2C over GPIO
- The FEB size (number of channels) to be adapted according to detector segmentation, available space ...
 - → Example of 256-channel FEB: use 8-lane FireFly
 - → For other channel counts, some lanes may be ignored

Quick assessment of number of FireFly links for CyMBaL

- 512-channel on-detector FEB
 - → 8 64-channel FE ASICs (e.g. future SALSA) with
 - 1 Gbit/s output data link
 - Unique system clock
 - On-board 1-to-8 fan-out
 - Synchronous command encoding trigger
 - On-board 1-to-8 fan-out
 - → Bi-directional I2C SDA + unidirectional I2C SDC
 - Chained
 - → Common on-onboard test pulse logic

- Off-detector on-detector interface
 - → 3 downstream lines:
 - Clock, command, I2C SDC
 - → 1 bi-directional I2C SDA line
 - → 8 upstream lines
 - 8 data links
 - → Fits single 12-pair Samtec FireFly copper cable
 - Test sequence may be initiated by I2C over GPIO
- Assume CyMBaL of 5 η x 7 ϕ = 35 detectors of 1024 channels each
- Assume 512-channel FEB
- Requirement: 70 12-laine 10 mm wide FireFly cables
 - → 35 cables distributed over 3 m perimeter on each side of the tracker
 - 1 cm cable every 8.5 cm

Summary

- Radiation levels seem to be low
 - → Compatible with space grade commercial components
 - To be confirmed for CyMBaL and to be checked at other MPGD locations
- FEB design should be robust against magnetic field
 - → Most probably, need to stand for up to 2T
 - → Special attention is needed for efficient powering
 - DC/DC regulators operating in high magnetic field to go down to 2.5-1.5V
 - Ultra LDO linear regulators for sensors @ 1.2V
 - Voltage-current-temperature monitoring
 - → Colling will be needed
 - Should be compatible with material budget
 - A usual cooling-LV-HV interlock needs to be implemented
- FEB on-board clock-synch command distribution should be possible with Rafael
- Copper FireFly from Samtec could be a good candidate for FEB-RDO link
 - → Passive no constraints from radiation or magnetic field
 - → Low profile, encouraging signal integrity features

Caveat and next steps

- None of the above is fixed
 - → Will evolve with detector design
 - → Choices will depend on ROD locations as well
- Data rates need yet to be estimated
 - → Physics + background
- Assess number of FEB-ROD links according to detector segmentation
 - → Their volume, weight
 - → Find nearest positions to place RDOs
- Number of RODs to be defined
 - → Depends on data constraints
 - How much data can be swallowed by a ROD
 - → Depends on mechanical constraints
 - How many links can be physically aggregated on the ROD
 - Even if small, the FireFly connector has some size
 - It requires 12 differential signals 24 FPGA IOs
- Profit from shared design with other MPGDs
 - → At least wherever possible
 - → Understand if any common LV distribution system is foreseen
 - → Understand where the LV blocs can be placed in the cavern
- In general, structure integration questions to ask for discussions with integration group