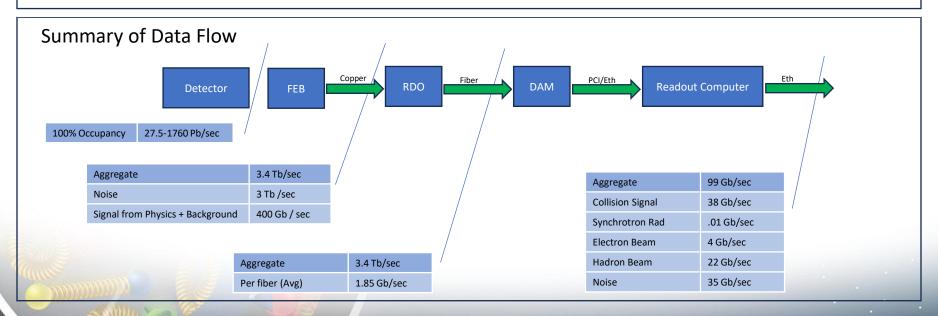


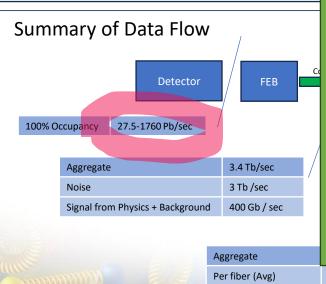
Jeff Landgraf 8/21/2023

Electron-Ion Collider









### ePIC Data Volumes

- Data volumes / assumptions
- Examples of DAQ processing

| Detector     |       |         | Channels |      |       | RDO  | Fiber | DAM | Data                      | Data                          |
|--------------|-------|---------|----------|------|-------|------|-------|-----|---------------------------|-------------------------------|
| Group        | MAPS  | AC-LGAD | SiPM/PMT | MPGD | HRPPD |      |       |     | Volume<br>(RDO)<br>(Gb/s) | Volume<br>(To Tape)<br>(Gb/s) |
| Tracking     | 36B   |         |          | 202k |       | 872  | 1744  | 24  | 27                        | 26                            |
| Calorimeters | 88M   |         | 123k     |      |       | 258  | 556   | 10  | 502                       | 27                            |
| Far Forward  | 300M  | 2.3M    | 170k     |      |       | 178  | 492   | 5   | 15                        | 8                             |
| Far Backward | 146M  |         | 2k       |      |       | 50   | 100   | 6   | 150                       | 1                             |
| PID          |       | 7.8M    | 320k     |      | 140k  | 241  | 523   | 39  | 2628                      | 36                            |
| TOTAL        | 36.5B | 10.1M   | 615k     | 202k | 140k  | 1599 | 3415  | 84  | 3,322                     | 98                            |



| Detector     |       |         | Channels |      |       | RDO  | Fiber | DAM | Data                      | Data                          |
|--------------|-------|---------|----------|------|-------|------|-------|-----|---------------------------|-------------------------------|
| Group        | MAPS  | AC-LGAD | SiPM/PMT | MPGD | HRPPD |      |       |     | Volume<br>(RDO)<br>(Gb/s) | Volume<br>(To Tape)<br>(Gb/s) |
| Tracking     | 36B   |         |          | 202k |       | 872  | 1744  | 24  | 27                        | 26                            |
| Calorimeters | 88M   |         | 123k     |      |       | 258  | 556   | 10  | 502                       | 27                            |
| Far Forward  | 300M  | 2.3M    | 170k     |      |       | 178  | 492   | 5   | 15                        | 8                             |
| Far Backward | 146M  |         | 2k       |      |       | 50   | 100   | 6   | 150                       | 1                             |
| PID          |       | 7.8M    | 320k     |      | 140k  | 241  | 523   | 39  | 2628                      | 36                            |
| TOTAL        | 36.5B | 10.1M   | 615k     | 202k | 140k  | 1599 | 3415  | 84  | 3,322                     | 98                            |



Sparse readout implies lots of header information

- 1. Geography
  - 1. Which Channel?
  - 2. Which ASIC?
  - 3. Which RDO?
  - 4. Which DAM?
  - 5. Which Time?
  - 6. What is the ADC / TOA / TOT?
- 2. Assume for Data Volume Calculations 64 bits / hit
- → 1760 Pb/sec assumes sparse readout of every channel
- → 27.5 Pb/sec assumes headers collapsed because not sparse!

Per fiber (Avg) 1.85 Gb/sec Noise 35 Gb/sec

### Real work was all done by the Backgrounds Group

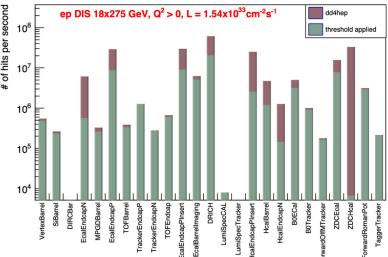
https://wiki.bnl.gov/EPIC/index.php?title=Background

I had to make many assumptions.

To find hit rates:

18x275 DIS was available But scaled for 83kHz

I assumed "same" kinematics, but scaled to 500kHz rate...


| cross-section        | 5x41 GeV             | 5x100 GeV            | 5x100 GeV 10x100 GeV |                      | 18x275 GeV           |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| DIS ep               | 28.5ub               | 35ub                 | 41ub                 | 50ub                 | 54ub                 |
| hadron beam (p) gas  | 77.3mb               | 76.8mb               | 76.8mb               | 78.5mb               | 78.5mb               |
| electron beam gas    | 622.158 +/- 0.036 mb | 622.158 +/- 0.036 mb | 699.393 +/- 0.041 mb | 699.393 +/- 0.041 mb | 768.343 +/- 0.049 mb |
| DIS eA               | ub                   | ub                   | ub                   | 1                    | 1                    |
| hadron beam (Au) gas | 3418mb               | 3440mb               | 3440mb               | 1                    | 1                    |

This table shows the rates for electron+proton beam configurations:

Electron beam-gas rates consider larger region of -5 to +15 meters along the IP, hadron beam-gas rates consider region of -5.5 to +5 meters.

| rates in kHz      | 5x41 GeV    | 5x100 GeV   | 10x100 GeV  | 10x275 GeV  | 18x275 GeV | Vacuum   |
|-------------------|-------------|-------------|-------------|-------------|------------|----------|
| DIS ep            | 12.5 kHz    | 129 kHz     | 184 kHz     | 500 kHz     | 83 kHz     |          |
| hadron beam gas   | 12.2kHz     | 22.0kHz     | 31.9kHz     | 32.6kHz     | 22.5kHz    | 10000Ahr |
|                   | 131.1kHz    | 236.4kHz    | 342.8kHz    | 350.3kHz    | 241.8kHz   | 100Ahr   |
| electron beam gas | 2181.97 kHz | 2826.38 kHz | 3177.25 kHz | 3177.25 kHz | 316.94 kHz | 10000Ahr |
| DIO - 4           | 14.1-       | 1-11-       |             |             |            |          |

131.1 kHz 236.4 kHz
electron beam gas 2181.97 kHz 2826.38 kHz
DIS eA kHz kHz
hadron beam (Au) gas 7.36 kHz 10.3 kHz
79.1 kHz 110.7 kHz



| Sub-detector       | Threshold | Integration time | Sub-detector    | Threshold | Integration time |
|--------------------|-----------|------------------|-----------------|-----------|------------------|
| VertexBarrel       | 0.65 keV  | 2 µs             | EcalEndcapP     | 3.0 MeV   | 5 ns             |
| SiBarrel           | 0.65 keV  | 2 µs             | TOFBarrel       | 0.5 keV   | 50 ps            |
| EcalEndcapN        | 5.0 MeV   | 5 ns             | TrackerEndcap   | 0.65 keV  | 50 ps            |
| MPGDBarrel         | 0.25 keV  | 20 ns            | DIRCBar         | 0.2 p.e.  | 50 ps            |
| EcalEndcapPInsert  | 3.0 MeV   | 5 ns             | TOFEndcap       | 0.5 keV   | 50 ps            |
| LFHCAL             | 500 keV   | 25 ns            | PFRICH          | 0.5 p.e.  | 50 ps            |
| HcalEndcapPInsert  | 500 keV   | 25 ns            | DRICH           | 0.5 p.e.  | 50 ps            |
| HcalBarrel         | 75 keV    | 25 ns            | EcalBarrelScFi  | 2.5 MeV   | 5 ns             |
| B0ECal             | 1 MeV     | 5 ns             | HcalEndcapN     | 170 keV   | 25 ns            |
| B0Tracker          | 1.0 keV   | 40 ps            | ZDCEcal         | 1 MeV     | 5 ns             |
| ForwardOffMTracker | 1.0 keV   | 40 ps            | ZDCHcal         | 100 MeV   | 25 ns            |
| TaggerTracker      | 1.0 keV   | 5 ns             | ForwardRomanPot | 1.0 keV   | 40 ps            |

| M | Data<br>Volume<br>(RDO)<br>(Gb/s) | Data<br>Volume<br>(To Tape)<br>(Gb/s) |
|---|-----------------------------------|---------------------------------------|
| 1 | 27                                | 26                                    |
| ) | 502                               | 27                                    |
|   | 15                                | 8                                     |
|   | 150                               | 1                                     |
| Ð | 2628                              | 36                                    |
| 1 | 3,322                             | 98                                    |
|   |                                   |                                       |

Eth

nputer

The simulations had nominal thresholds, but these are known to be wrong in some cases. For example, we do not believe the Synchrotron Radiation Numbers. This is being resolved but not yet available.

| Aggregate                        | 3.4 Tb/sec   |
|----------------------------------|--------------|
| Noise                            | 3 Tb /sec    |
| Signal from Physics + Background | 400 Gb / sec |

| Aggregate       | 3.4 Tb/sec  |
|-----------------|-------------|
| Per fiber (Avg) | 1.85 Gb/sec |



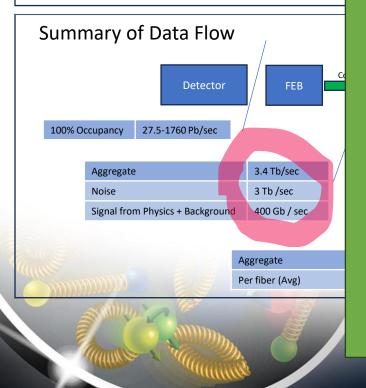


"Noise"

I took from Digitization worksheet if available:


https://docs.google.com/spreadsheets/d/1s8oXj36Sqlh7TJeHFH89gQ\_ayU1\_SVEpWQNkx6sETKs/edit?usp=sharing

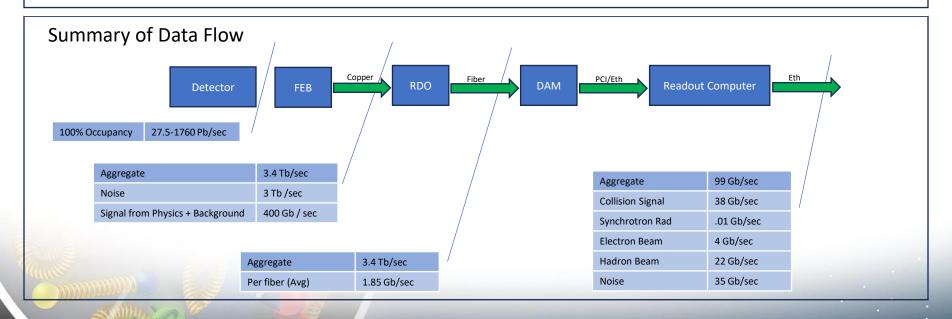
Otherwise from DAQ WG presentations from detector experts.


Generally, I assume "noise" was uncorrelated electronics noise, so is susceptible to removal via cluster finding.

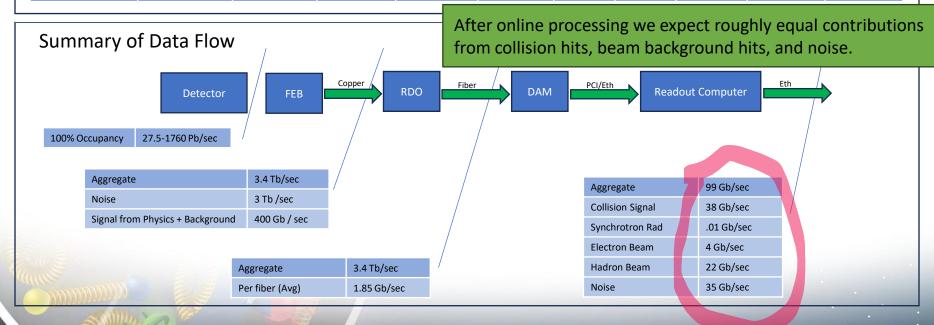
I also included the worse case dark current numbers from dRICH

| 1 | Data<br>Volume<br>(RDO)<br>(Gb/s) | Data<br>Volume<br>(To Tape)<br>(Gb/s) |
|---|-----------------------------------|---------------------------------------|
|   | 27                                | 26                                    |
|   | 502                               | 27                                    |
|   | 15                                | 8                                     |
|   | 150                               | 1                                     |
|   | 2628                              | 36                                    |
|   | 3,322                             | 98                                    |
|   |                                   |                                       |




| Detector     |       |         | Channels |      |       | RDO  | Fiber | DAM | Data                      | Data                          |
|--------------|-------|---------|----------|------|-------|------|-------|-----|---------------------------|-------------------------------|
| Group        | MAPS  | AC-LGAD | SiPM/PMT | MPGD | HRPPD |      |       |     | Volume<br>(RDO)<br>(Gb/s) | Volume<br>(To Tape)<br>(Gb/s) |
| Tracking     | 36B   |         |          | 202k |       | 872  | 1744  | 24  | 27                        | 26                            |
| Calorimeters | 88M   |         | 123k     |      |       | 258  | 556   | 10  | 502                       | 27                            |
| Far Forward  | 300M  | 2.3M    | 170k     |      |       | 178  | 492   | 5   | 15                        | 8                             |
| Far Backward | 146M  |         | 2k       |      |       | 50   | 100   | 6   | 150                       | 1                             |
| PID          |       | 7.8M    | 320k     |      | 140k  | 241  | 523   | 39  | 2628                      | 36                            |
| TOTAL        | 36.5B | 10.1M   | 615k     | 202k | 140k  | 1599 | 3415  | 84  | 3,322                     | 98                            |



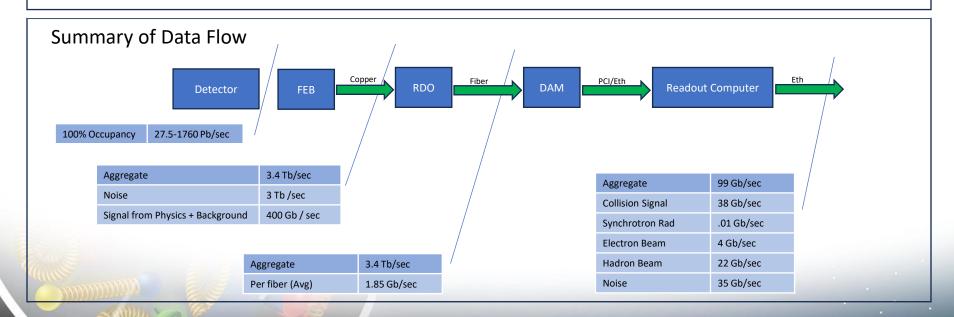

### Significant Filtering Challenges:

- At RDO level, "noise" dominates signal by factors up to x7.5
- dRICH SiPMs requiring single photon sensitivity
  - Dark currents increase with radiation damage
  - · Expect several years before annealing necessary to reduce dark currents
- Electron Bremsstrahlung in Far Backward
  - Bremsstrahlung will produce up to 18 particles / BX.
  - Signal needs to be summarized, but full data is only needed in conjunction with central detector collisions
- Main Strategy for dRICH/Far Backward
  - Supply enough bandwidth to account for maximum data volume to the DAM boards
  - Apply cross-detector correlation filter in nearby detectors in DAM / Readout computers to reduce recorded data volume

| Summary of Chan  Data Filtering |       |            |                                                                                                                                                                                             |      |      |           |           |      |       |    |  |  |  |
|---------------------------------|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------|-----------|------|-------|----|--|--|--|
| Detector<br>Group               | MAPS  | and for th | Cluster finding accounts for the balance of the calculated noise reduction, and for the reduced signal data volume.  Additional methods are being considered including AI/ML techniques for |      |      |           |           |      |       |    |  |  |  |
| Tracking                        | 36B   |            | Additional methods are being considered including AI/IVIL techniques for pattern recognition and/or data compression                                                                        |      |      |           |           |      |       |    |  |  |  |
| Calorimeters                    | 88M   | These fun  | _                                                                                                                                                                                           |      | •    | boards ar | nd the On | line | 502   | 27 |  |  |  |
| Far Forward                     | 300M  | computing  | g farm                                                                                                                                                                                      |      |      |           |           |      | 15    | 8  |  |  |  |
| Far Backward                    | 146M  |            | 2k                                                                                                                                                                                          |      |      | 50        | 100       | 6    | 150   | 1  |  |  |  |
| PID                             |       | 7.8M       | 320k                                                                                                                                                                                        |      | 140k | 241       | 523       | 39   | 2628  | 36 |  |  |  |
| TOTAL                           | 36.5B | 10.1M      | 615k                                                                                                                                                                                        | 202k | 140k | 1599      | 3415      | 84   | 3,322 | 98 |  |  |  |

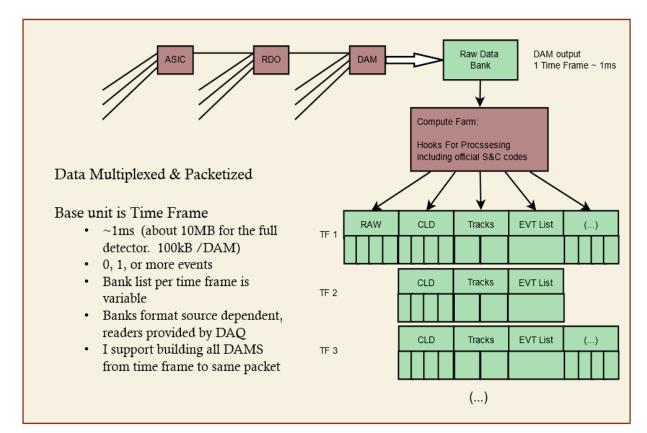


| Detector     |       |         | Channels |      |       | RDO  | Fiber | DAM | Data                      | Data                          |
|--------------|-------|---------|----------|------|-------|------|-------|-----|---------------------------|-------------------------------|
| Group        | MAPS  | AC-LGAD | SiPM/PMT | MPGD | HRPPD |      |       |     | Volume<br>(RDO)<br>(Gb/s) | Volume<br>(To Tape)<br>(Gb/s) |
| Tracking     | 36B   |         |          | 202k |       | 872  | 1744  | 24  | 27                        | 26                            |
| Calorimeters | 88M   |         | 123k     |      |       | 258  | 556   | 10  | 502                       | 27                            |
| Far Forward  | 300M  | 2.3M    | 170k     |      |       | 178  | 492   | 5   | 15                        | 8                             |
| Far Backward | 146M  |         | 2k       |      |       | 50   | 100   | 6   | 150                       | 1                             |
| PID          |       | 7.8M    | 320k     |      | 140k  | 241  | 523   | 39  | 2628                      | 36                            |
| TOTAL        | 36.5B | 10.1M   | 615k     | 202k | 140k  | 1599 | 3415  | 84  | 3,322                     | 98                            |




### Next Steps:

- Get thresholds under control
- 2. Get to the ASIC / FEB granularity to study bottlenecks
- 3. Automate the data volume calculations, both to make the assumptions explicit, and to track detector changes
- 4. Need to track the development of detectors to ensure that the noise estimates are correct


| PID   |       | 7.8M  | 320k |      | 140k |
|-------|-------|-------|------|------|------|
| TOTAL | 36.5B | 10.1M | 615k | 202k | 140k |

| RDO  | Fiber | DAM | Data<br>Volume<br>(RDO)<br>(Gb/s) | Data<br>Volume<br>(To Tape)<br>(Gb/s) |
|------|-------|-----|-----------------------------------|---------------------------------------|
| 872  | 1744  | 24  | 27                                | 26                                    |
| 258  | 556   | 10  | 502                               | 27                                    |
| 178  | 492   | 5   | 15                                | 8                                     |
| 50   | 100   | 6   | 150                               | 1                                     |
| 241  | 523   | 39  | 2628                              | 36                                    |
| 1599 | 3415  | 84  | 3,322                             | 98                                    |



### **DAQ Computing**

- Time Frames (~1ms)
  - Up to ~500 events
  - ~10MB output data
  - ~3.4MB from RDO average / DAM
  - ~100kB to Tape average / DAM
- Routing data
- · Formatting data
- Processing data
  - DAM FPGA & CPUs
  - Cluster finding
  - Software triggering
  - Sanity Checkers
  - QA Monitoring
  - Metadata
  - Slow controls integration
- One goal we should have is to ensure transparency and appropriate control of the algorithms used for all algorithms that might impact physics
- Scalers / continuously running DAQ components



# DAQ Processing: CLD data bank for Barrel TOF

### Barrel: Data Compression & Processing 1

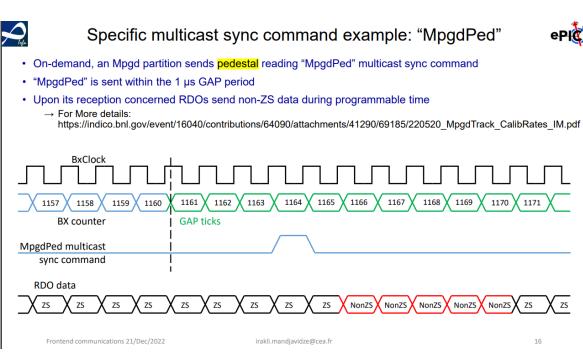
- each barrel stave is 128 strips in z and 64 strips in phi
  - the local stave coordinate system is thus a plane of 64 x 128 "pixels"
- per-channel processing
  - o gain correction is applied to the ADC data
  - t0 correction is applied to the TDC data
  - slewing corrections is applied to TDC data
  - ⇒ obviously unphysical data is removed (cuts down the noise significantly)
- cluster finder runs on this (locally x-y) plane and looks for strip patterns
  - o more than 1 adjacent strips with the same timing information form a valid particle (as opposed to random noise)
  - timing data should correspond to possible collisions, out-of-time hits are assumed to be noise
  - o morphological cuts: e.g. middle pixels should be higher than neighbors, etc
  - we think this gives us at least x100 noise rejection
    - a better number needs a slow simulator & reconstruction
- hits are formed and saved with the following information
  - o coarse counter C 17 bits (relative tick from the start of the timeframe; 17 bits is up to 1.3 ms ⇒should be enough)
  - local x-coordinate as a fixed point number of 7.5 bits (relative coordinate system of the stave)
  - local y-coordinate as a fixed point number of 6.5 bits (relative coordinate system of the stave)
  - fine hit time T as a fixed point number in 10.5 bits (timing from TDC)
  - summed up ADC (charge) is 12 bits
  - flags 4 bits
  - total #bits per hit is 71 ⇒ but let's call it 10 bytes

Tonko Ljubicic 9 Feb 2023 (at the DAQ WG)

Kinds of data calibration data needed by DAQ

- Pedestals
- Gain corrections
- T0 Corrections
- Slewing Corrections

The details will be detector specific


They can be tied to actual voltage settings as well

These may need special runs and automated processing



## DAQ Processing: Pedestal Bank

- We will not be able to readout black detectors, so pedestal runs in ePIC are time-interleaved with ZS data (or blocked data)
- Synchronous commands would be sent via the GTU -> RDO -> ASIC to send bursts of non-ZS data
- These would be split out from the ZS data to make NonZS data banks



## Other DAQ Processing

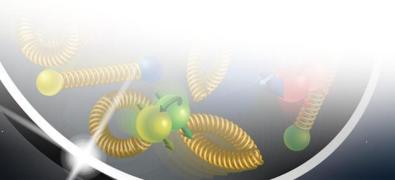
#### Slow Controls Bank:

Each timeframe (or at some other periodicity) we might write data banks with important collider information (spin patterns), Magnet info, Basic monitoring info from detectors to ensure that this information is always available during analysis

### Lumi information Bank:

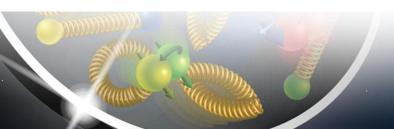
The Far Backward detectors will produce histograms of the full data in order to determine bunch by luminosities

#### Event candidate lists


- ➤ DAQ will need to evaluate potential events for the cross-detector filters for FB and dRICH. These can be stored for later evaluation (or use)
- ➤ DAQ will also need monitoring to ensure, for example, that the synchronization of the data is robust. This may also require event candidate lists
- Reconstruction "seed tasks" to simplify offline processing
  - The algorithms for these (and possibly for some of the previously discussed tasks) should be provided, and monitored by the collaboration (or the reconstruction team) but run in the context of DAQ
  - We will need a way to define the offline resources available at various stages and allow for transparent use of analysis codes.
  - We also would wish to have a scheme to make the codes in place at a given time transparent to the collaboration
  - This is not easy, for example:
    - Release schedules have far different constraints
    - Have strict constraints in DAQ for avoiding crashes, and for limiting resource use
    - Have separate firewall protected enclaves from normal analysis processing

## Summary

- Explained the expected data volume
- Explained the limitations / uncertainties / tasks needed to complete to improve the data volume calculations
- Discussed some of the expected processing that would be handled early in the DAQ / Software chain


Questions?

## Backup



### EPIC Detector Scale and Technology Summary:

| Detector System                                                                                                                                                            | Channels                                                                                                                     | RDO                                        | Gb/s (RDO)       | Gb/s (Tape)   | DAM Boards   | Readout Technology                                                                                                         | Notes                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Si Tracking: 3 vertex layers,<br>2 sagitta layers,<br>5 backward disks,<br>5 forward disks                                                                                 | 7 m^2<br>36B pixels<br>5,200 MAPS sensors                                                                                    | 400                                        | 26               | 26            | 10           | MAPS:<br>Several flavors:<br>curved its3 sensors for vertex<br>Its-2 staves / w improvements                               | Fiber count limited b <b>A</b> rtix Transceivers                                                                                                                                    |
| MPGD tracking: Electron Endcap<br>Hadron Endcap<br>Inner Barrel<br>Outer Barrel                                                                                            | 16k<br>16k<br>30k<br>140k                                                                                                    | 32<br>32<br>120<br>288                     | 1                | .2            | 14           | uRWELL/ SALSA<br>uRWELL/ SALSA<br>MicroMegas/ SALSA<br>uRWELL                                                              | 64 Channels/Salsa, up to 8 Salsa / FEB&RDO 256 ch/FEB for MM 512 ch/FEB foruRWELL                                                                                                   |
| Forward Calorimeters: LFHCAL ECAL W/SciFi Barrel Calorimeters: HCAL HCAL insert ECAL SciFi/PB ECAL ASTROPIX Backward Calorimeters: NHCAL ECAL (PWO)                        | 64k<br>16k<br>8k<br>8k<br>8k<br>88M pixels<br>16.2k<br>3k                                                                    | 74<br>64<br>9<br>9<br>32<br>40<br>18<br>12 | 502              | 28            | 10           | SiPM/HG2CROC<br>SiPM/Discrete<br>SiPM/HG2CROC<br>SiPM/HG2CROC<br>SiPM/HG2CROC<br>Astropix<br>SiPM/HG2CROC<br>SiPM/Discrete | Assume HGCROC 56th * 16 ASIC/RDO = 896ch/RDO Assume FLASH FEB 16h * 16 FEB/RDO = 256ch/RDO  Assume similar structure to-2tbut with sensors with 250k pixels for RDO calculation.    |
| Far Forward: B0: 3 MAPS layers  1 or 2 AC-LGAD layer 2 Roman Pots 2 Off Momentum ZDC: Crystal Calorimeter 32 Silicon pad layer 4 silicon pixel layers 2 boxes scintillator | 300M pixel<br>300k or 600k<br>1M (4 x 135k layers x 2 dets)<br>650k (4 x 80k layers x 2 dets)<br>400<br>11.52k<br>160k<br>72 | 10<br>30<br>64<br>42<br>10<br>10<br>2      | 15               | 8             | 5            | MAPS AC-LGAG / EICROC AC-LGAD / EICROC AC-LGAD / EICROC APD HGCROC as per ALICEOCaFE                                       | 3x20cmx20cm 600^cm layers (1 or 2 layers) 13 x 26cm layers 9.6 x 22.4cm layers There are alternatives for <b>AG</b> AD using MAPS and low channel count <b>DC</b> GAD timing layers |
| Far Backward: Low Q Tagger 1<br>Low Q Tagger 2<br>Low Q Tagger 1+2 Cal<br>2 x Lumi PS Calorimeter<br>Lumi PS tracker<br>Photon Detector                                    | 33M pixels<br>33M pixels<br>700<br>1425/75<br>80M pixels                                                                     | 12<br>12<br>1<br>1<br>24                   | 150              | 1             | 1 1          | Timepix4<br>Timepix4<br>(SiPM/HG2CROC) / (PMT/FLASH)<br>Timepix4                                                           |                                                                                                                                                                                     |
| PID-TOF: Barrel<br>Endcap                                                                                                                                                  | 2.2M<br>5.6 M                                                                                                                | 268<br>134                                 | 728              | 1             | 12           | AC-LGAD / EICROC (strip)<br>AC-LGAD / EICROC (pixel)                                                                       | bTOF 128 ch/ASIC, 64 ASIC/RDO<br>eTOF 1024 pixel/ASIC, 2448 ASIC/RDO (41ave)                                                                                                        |
| PID-Cherenkov: dRICH<br>pfRICH<br>DIRC                                                                                                                                     | 320k<br>70k<br>70k                                                                                                           | 200<br>17<br>24                            | 1865<br>24<br>11 | 17<br>12<br>6 | 20<br>1<br>6 | SiPM / ALCOR  HRPPD / EICROC (strip or pixel)  HRPPD / EICROC (strip or pixel)                                             | Worse case after radiation. Includes 30% timing window. Requires further data volume reduction software trigger                                                                     |

