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BrookRiaven National Lab is copstructing
study basic:nuclear physics, e.g.,

* Where do protons get their spin from?
*  How did cosmic events produce the isotope dlstrlbutlon’?

+ How do gluons hold nuclei together

Designated the most pressing next NP project by DOE. Pprobably the most complex accelerator ever built:
The largest accelerator project in the US today.

* Polarized protons and electrons.
Beam cooling (Rf, e, and photon based)
Superconducting RF acceleration

Cornell Laboratory for S ducting magnets
Accelerator-based Sciences and HPErCONEHCHng Mag

Education (CLASSE)




Welcome to Cornell Accelerator physics

® 1932: Brasch and Lange use potential from lightening, in the Swiss Alps,
Lange is fatally electrocuted

[
® 1934: Livingston builds the first Cyclotron away from Berkely (2MeV protons) at

Cornell (in room B54)
® 1949: Wilson et al. at Cornell are first to store beam in a synchrotron (later
300MeV, magnet of 80 Tons)
® 1954: Wilson et al. build first synchrotron with strong focusing for 1.1MeV.
electrons at Cornell, 4cm beam pipe height, only 16 Tons of magnets.
® 1979: 5GeV electron positron collider CESR (designed for 8GeV) with world record lumi.

® Currently:

CESR operation and optimization for CHESS light source
CBETA, 1st multi-turn SRF Energy Recovery Linac (ERL)
Focus on SRF, bright electron sources, and EIC design
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Cornell Accelerators 1934 - present

CLASSE at Cornell University has had a long history of forefront accelerator
development for lepton accelerators.

First chamber-less

synchrotron \

First strong focusing
synchrotron

\

CBETA
First synchrotron radiation
beamline, first characterization
First cyclotron outside
Berkeley

First
multi-turn
SRF ERL

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Figure from K. Berkelman,

Electron Synchrotrons “A personal History of CESR and CLEO”
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Previous work: Cornell & BNL

* Cornell DC gun, 2nC peak

+ 6MeV SRF injector (ICM), 1.3GHz
The Cornell-BNL ERL Test Accelerator 6-cavity SRF CW Linac (MLC), 1.3GHz

* 4 Spreaders / Combiners with electro-magnets
* FFAcells with permanent magnets, 3.8 energy aperture, 7 beams

14 cells 13 cells 24 ce\\®
42,78, 114, 150 MeV [... *] Permanent Magnet
%"“Hﬂnuuumummuunuuunmmnmmuunmmumm uuuummﬂﬂ““““m FFA cells
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First multi-turn ERL operation
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7 beams in the same FFA beamline,
accelerated and energy-recovered.

Reports appeared in Nature, Phys. Rev. Letters, Forbes Magazine,
EEE Spectrum, reddid.com, and others.
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Georg Hoffstaetter (Prof) The Corne" ERL l EIC team

David Sagan (Senior Research Associate): Bmad / Tao support for group members and other EIC contributors
Jim Crittenden (Research Associate): Beam-based alignment of sextupoles
Lucy Lin (graduate student): Machine learning @ CBETA, LEReC , CeC, and lately Booster and AGS
Jonathan Unger (graduate student): DA at the ESR, the ring cooler, the RCS, and the ring cooler
Matthew Signorelli (graduate student): Electron polarization and emittance creation, Sodom-ll for protons and He
Ningdong Wang (graduate student): Space charge at EIC’s ERL cooler, coupler kicks, and optimization of
longitudinal electron distribution
Eiad Hamwi (grad student): Polarized protons in RHIC
Arial Shaket (grad student): BBA of sextupoles
Several undergraduates
James Wang (undergad): BBA for ESR sextupoles
Jacob Asimow (undergrad): Linear polarization formalism, fully implemented and documented in Bmad/Tao.
Vadim Popov (undergrad): Machine learning for accelerator operations
Aakanksha Bharadwaj (undergrad): Machine learning for accelerator operations
Joe Devlin (undergrad): Polarized protons, nonlinear spin-orbit resonances
Diego Khayat (undergrad): Space charge at EIC’s ERL cooler, optimization of longitudinal electron distribution
Daria Kuzovkova (undergrad): DA tracking in the RCS
Anna Conelly (REU undergrad): Spin tracking
Laura Smith (REU undergrad): DA tracking
Wyatt Carbonell (REU undergrad): BBA of sextupoles
(© Fostiavey @ CLASSE
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Past ML project #1: CBETA 1-turn lattice orbit prediction

oolo{
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Past Project #2: Trajectory Alignment at LEReC
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» Bayesian optimization algorithm trained with 40 initial samples to maximize
transverse cooling rate A

A=|(1/6)(d8/dt)|
« Algorithm converged quickly (reach close neighborhood in 3 steps)

» Tune electrons from the farthest positions to the center and maintain the
trajectories 10



Project #3: Time-resolved Diagnostic Beamline First data taken April
2022 — more data February 2023

Beam line: 7 quadrupoles (3 + 4), 2 trims, 1 transverse deflecting cavity, 1 dipole
Monitors: 2 Profile Monitors, 4 BPMs

[4]
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Emittance Measurement Speedup with Machine Learning at CeC

Time-resolved Diagnostic Beamline (TRDBL)

» Capable of evaluate electron beam quality with time resolution of 1 ps » Atransverse deflecting cavity (TDC) provides a time dependent

« Fully characterize transverse and longitudinal beam profiles transverse kick to the beam

» After TDC, the beam’s longitudinal profile converts to Y direction, which is
measurable on YAG screen
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New Project: higher proton polarization

» What high-impact operational challenge can be addressed by MI/AI?
=>» Polarized protons.

* From the source to high energy RHIC experiments, 20% polarization
IS lost.

* Polarized luminosity for longitudinal collisions scales with P4, i.e., a
factor of 2 reduction!

* The proton polarization chain depends on many delicate accelerator
settings form Linac to the Booster, the AGS, and the RHIC ramp.

* Even 5% more polarization would be a significant achievement.
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Outline
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Gaussian Process (GP) Bayesian Optimization (BO) and physics
informed learning.

When is ML/AI better for accelerator operations than other feedbacks
and optimizers?

g%ective of proposed work: higher proton polarization in RHIC and the

Polarized-proton acceleration chain.

Potential avenues toward higher proton polarization.
(1) Emittance reduction

(2) More accurate timing of timed elements

(3) Reduction of resonance driving terms

Collaborations: BNL, Cornell, SBU, SLAC, JLAB, RPI
& CLASSE
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Optimizers for different applications

Observe performance change dfter a

less 4«———  assumed knowledge of machine >  more
) 4 )
Model-Free Model-guided Global Modeling +
Optimization Optimization Feed-forward Corrections

Y/

setting adjustment

- estimate direction or apply
heuristics toward improvement

B — —— ——

J- Kirschner

Update a model at each step

- use model to help select the next
point

Make fast system model

= provide initial guess (i.e. warm
start) for settings or fast compensation

gradient descent
simplex
ES

® CLASSE
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Bayesian optimization
reinforcement learning

\. J

ML system models +
inverse models

Courtesy Auralee Edelen



Characteristics of involved optimizations

1. Optimal parameter settings are hard to find, and the optimum is
difficult to maintain.

2. The data to optimize on has significant uncertainties.
Models of the accelerator exist.
4. A history of much data is available and can be stored.

0

Is this type of problem suitable for Machine Learning?
Why would ML be better suited than other optimizers and feedbacks?
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] Program
* 8:30 AM Welcome & Introduction

* 9:00 AM Overview of polarized proton acceleration
9:45 AM Basis of Bayesian Optimization

10:15 AM Overview of Uncertainty Quantification and application to p-p
acceleration

10:45 AM Digital Twin Modeling With Bmad

11:30 PM Preparation of accurate accelerator models for Booster and AGS
12:15 PM Lunch

1:15 Where can Bayesian Optimization be applied in the p-p chain?

1:45 PM ML experiences and their application to the p-p chain

2:30 PM Ideas for improved emittance measurements

- 3:00 PM How to connect ML ideas to the control system and a digital twin
* 3:15 PM Overview of CESR and discussion of applicable ML ideas

* 4:15 PM Discussion on major tasks and assignments for task leaders

« 5:00 PM Discussion on future schedules for weekly mtgs, machine studies,
milestone mtgs, collaboration mtgs, DOE report preparations, publications

k? Brookhaven

National Laboratory
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Acquisition Function

» Guide how input space should be
explored during optimization

« Combine predicted mean and variance
from Gaussian Process model
* Probability Improvement (PI)
» Expected Improvement (EI)

» Upper Confidence Bound (UCB)

UCB(x) = u(x) + ko (x)

~ -
ey @ CLASSE
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Merit of physics-informed optimization

Neural Network System Models + Bayesian Optimization

Combining more expressive models with BO = important for scaling up to higher-dimensional
tuning problems (more variables)

Good first step from previous work: use neural network aw
system model to provide a prior mean for a GP ; y
m prior = ° ’ ‘ S i ’ :
- Ll Summer '22 undergrad intern
Used the LCLS injector surrogate model for prototyping Connie )fu
variables: solenoid, 2 corrector quads, 6 matching quads ‘\d/
ata

objective: minimize emittance and matching parameter

Correlations Between

Predictions and Ground Truth Mean and Standard Error of Best -Emittance*bmag per Iteration (50 Trials)
Correlations between Model2 and Surrogate (Ground Truth) (10k samples) -~ = _06 E I
Conelation = 1 o e — - - —_—
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o -20 E Constant (Default)
s o8 i By o 0.460 0.465 0.470 0.475 0.480 0.485 £ -18 Ground Truth
00 -5 -Bo 125 -tho -5 3o i3 oo SOL1:solenoid field scale (kG*m) L 4 — Modell
Model 2 ’ —— Model2
0 10 20 30 40 50

iteration

Even prior mean models with substantial inaccuracies provide a Beta = 2.0

boost in initial convergence
- now testing on machine and refining approach

Forthcoming paper at NeurlPS ML for Physical Sciences workshop

Courtesy
Auralee Edelen



Advantages of Bayesian Optimization

a OT Op atlo ethod
Nelder- | Gradient Powell / L-BFGS Genetic Bayesian
Mead descent RCDS algorithm | optimization
Sample /high /high Low High
efficiency
Computational | Low/ Low Low Low High p n'l
costof picking the (eg. (esp. in high Summary of optimization methods
next point sorting) dimensions) .!A |
Blultizobjective Ne L Ne He L W Nelder | Gradient descent | Powell | L-BFGS | Genetic algorithm Bayesian
[ | -Mead / RCDS optimization
Sensitivity to local | High High High High Low Low Requires to o Yes No Yes s hio
minima (builds a global camputeor
I | model of /) estimate
‘ - - A derivatives of f
Sensitivity to High High High (Powell) High Low -
noise Low (RCDS) (can model Evaluations of f No No No No Yes No
noise itself) inherently done
in parallel
Hyper- Initial Step size: a # fit Accuracy |+ Population size * Kernel
parameters simplex | (+momentum: f8) points | of hessian |+ Mutation rate function
estimate |+ Cross-over rate * Kernel length

Noise ¢ Number of scales,
level generations amplitude
* Noise level
* Acquisition

function

R\
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Linac — Booster —-AGS | Readily available, large data

Optimization soin g ot " flow possible
Absolute Polarimeter (H jet) ;{?IIC pC Polarimeters
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Topics that can improve polarization

* (1) Emittance reduction
* (2) More accurate timing of tune jumps

* (3) Reduction of resonance driving terms
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Emittance reduction = less depolarization

* Optimized Linac to Booster transfer

* Optimized Booster to AGS transfer

« Optics and orbit correction in Booster and AGS

« Beam-based Quadrupole calibration from ORM in Booster and AGS.

« Bunch splitting in the Booster for space charge reduction and bunch
re-coalescing at AGS top energy.

o) - GER
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Space-charge emittance increase
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Figure 3.168: Normalized transverse emittances of polarized proton beam at AGS extraction
energy (7y = 25.5) as a function of intensity.

I " =» Splitting bunches before AGS
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Bunch splitting / coalescing

| h=2
e ' A6 or E6 E
\H' l h=1
/ (A3/B3)

[0 100 110

: Rf gap voltages, harmonics, and cavities involved in the standard 4:2:1 Booster merge used for EBIS Au. The x-axis is

ms from Bt0 and the y-axis is the voltage reference. The h=2 cavity has 2 gaps, and A3 and B3 have 1 gap. So, since both A3
and B3 are used for h=4 and h=1 the relative voltages here should be correct.

Splitting in the booster and coalescing after AGS accelerator
reduces space charge and emittance growth =» more polarization



Timing of tune jumps

The G-gamma meter and accurate energy vs. time

(1) Measure the energy by orbit + revolution frequency measurement

(2) Measure of energy by field + revolution frequency measurement

(3) Mea

0.1
008 |
< 0.06 |
0.04 +
0.02 |

0t
0.02 |
-0.04 |
-0.06 |

Measured asymmetry
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350 400
AGS time (ms)

450
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sure energy by spin flip at every integer spin tune

Combined optimization
=> better timing

=>» higher polarization



Reduction of AGS resonance driving terms

1.0

1 |

Spin
tune gap

Polarization is preserved in the AGS with two
partial helical dipole snakes (10% and 6%
rotation)

=)
©
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Provides spin tune ‘gap’ where imperfection
and vertical intrinsic resonance condition are

never met

=
[
I

1l Hor resonance

* vy #N (full spin flips)
* Vs #N+/-Q

=
~
1

Horizontal resonance condition still met

e vo =N +/-Q

» Horizontal resonance are weak, but

many (82 crossings)

* Currently handled with fast tune : ‘
jump 0.5 : i ; EEEHEE
AQ, =0.04, 100 us ' 10 20 30 40

Gy
Partial snakes drive horizontal depolarizing resonances

= Compensate by other coupling elements, e.g., skew quads

Fractional tune: Q,, Q,,vs

=
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Reduction of AGS resonance driving terms

« Two snakes, separated by 1/3 circumference
« Modulated resonance amplitude highest
near Gy = 3N (when snakes add
constructively)
« Horizontal resonances occur
every 4-5 ms at the standard AGS Horizontal Resonance Amplitudes in AGS
acceleration rate

—e— Baseline —o— Corrected

2.0 nnnﬂ’r

ML/AL:
Physics informed 42
Learning of the optimal = o Ll Ll Led bl
skew quad strength + =
optimal timing. AiE
(a)
I (@) Brookhaver @) CLASSE 0.0 ====3" 20 3 a0
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Linac to Booster transfer

Parameters to vary:
« Transfer line steers
« Main Booster dipol90e field

» Booster beta wave (stop-band quadrupoles) for tune toward %2 and minimum on
the foll

« Last two linac phases

* Injection bump elements and their time profile

« Scraper amplitudes

Observables to optimize:

« Transfer efficiency linac = Booster early ramp (2% absolute)

« Emittance from multi wires of the AGS transfer line (5% relative)

o) =
k' NBaI;iEJ]ncE!IkLL.ltEr\alteUrl:/I CLASSE
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Booster to AGS transfer

Parameters to vary:

« Transfer line steerers

« Main AGS dipole field

« AGS RF phase

« Amplitudes of two Injection bumps

* Horizontal orbit in the snakes

* Quadrupole corrections for the snakes
* Injection to accelerator tune change
Observables to optimize:

« Transfer efficiency Booster = AGS early ramp (2% absolute)
« Emittance from two IPMs (10% relative)



Response Error model for the ORM

« Scan through some common sources of error to see how much ORM changes
* Find relevant parameters to include for building error-detecting model

« Goal: establish a neural network that identify error source given a measured ORM

Av AR
() [ A
AI/N—l E ARn(m—l)

\ Avy ) \ ARy )

® CLASSE
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Sensitivity studies: error sources

« Sources or error and ranges come from past survey data

» Criteria to quantify & visualize sensitivity:

e RMS of ORM matrix

A measured - Pmode
« Beta-beating (vertical & horizontal) E_E a = Pmoget

B Bmodel
. Name | Unit | Range _
Main magnet roll error mrad [-0.5, 0.5]
Main magnet gradient error m-2 + 0.1%
Quadrupole gradient error m-2 + 0.2%
Sextupole offset error mm [-8, 8]
Snake magnet roll error mrad [-1.5, 1.5]

k? Brookhaven

National Laboratory
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Where do we put AI/ML?

« ORM will give us
« BPM and Corrector Anomalies (Trust Analysis)
« Gradient errors for given conditions
« Beta-deviations from model

« Dispersion measurements give us
«  BPM Consistency check for given dp/p (BPM Anomalies)
* Coupling through longitudinal motion (very slow, typically)

e Tune measurements

« Betatron tune and coupling = destructive measurement in Booster/AGS
 Tune, Chrom, coupling, emittance, dp/p from RHIC Schottky

« Chromaticity measurements — need to change energy and measure tune
* Orbit Measurements — parasitic = most are time averaged, some turn by turn
* Linear model + small nonlinearities with NN model

= Cornel Lebaretory for Accal etor-besed StienceS &ducstion
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Orbit & Optics correction in Booster / AGS

Parameters to vary:
Corrector coils (24 per Booster plane)

Corrector coils (48 per AGS plane)

Observables to optimize:
BPM readings (24 x&y in the Booster) (100um accuracy)
BPM readings (72 x&y in the AGS) (100um for 2mm size at 25GeV)

o) - GER
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Bunch splitting and coalescing

Parameters to vary:

3 RF amplitudes and phases, and their timing
Observables to optimize:

Mountain range width (5% relative)

Mountain range oscillations (10% of a sigma)
Baby-bunch currents (2%)

Emittance in the multi-wire to the AGS (5% relative)

Emittance from two IPMs (10% relative)
I k? NBa[iEngthgr\alteUrl;l' g,!;jé§&§£



Improved energy timing

Parameters to vary:

Time profile of the time-jump quadrupoles

Observables to optimize:

Revolution frequency (1.E-6)

Radial offset from BPM readings (20mu average)

Main dipole fields Hall-probe at injection (0.1%) + integrating coil (2%)

E(t) by measure f(t), x(t), B(t), P(t)
I (@) Brookhaver @ CLASSE



Reduction of resonance strengths

Parameters to vary:

14 Skew quad amplitudes at each of 80 resonances
Timing of skew quad changes

Observables to optimize:

Polarization after the ramp (2% relative)

Polarization at intermediate energies (2% relative)

o) - GER
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Personnel involved

Georg Hoffstaetter (C-AD and Cornell) — Accelerator physics
Kevin Brown (C-AD and Stony Brook) — Controls implementation
Vincent Schoefer (C-AD) — Controls implementation

Natalie Isenberg (CSI) — ML with uncertainties

Nathan Urban (CSI) — ML/AI consulting

Yuan Gao (C-AD) — ML applications

Lucy Lin (Cornell) — PhD student

Thomas Robertazzi (Stony Brook) — ML with uncertainties
David Sagan (Cornell) — accelerator modeling

Auralee Edelen (SLAC) — ML/AI consulting

Yinan Wang (RPI1) — ML/AI consulting
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Summary of the new project

» A proposal is being prepared for the enhancement of proton
polarization using ML/AI. Goal: 5%.

Several accelerator optimizations can impact polarization.

These topics are of the type suitable for Bayesian Optimization

ltems to be addressed:

«  Emittance reduction (orbit, optics, bunch splitting)
*  More accurate timing of quadrupole jumps (G-gamma meter)

«  Reduction of resonance driving terms (Horizontal spin matching with

skew quads)
I G‘Brookhaven' %) CLASSE
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