PHENIX data analysis and data preservation

Y. Akiba (RIKEN/RBRC) for PHENIX Collaboration

PAC 2023/09/11

Recent highlights and publication status

PHENIX papers since June 2022

PRL130,251901 (2023) PRD107,112004 (2023) PRD107,052012 (2023) PRD107,024907 (2023) PRC107,024914 (2023) PRC107,014907 (2023) PRC106,064912 (2022) PRC105,064912 (2022) PRC105,064902 (2022) arXiv:2303.12899 arXiv:2303.07191 arXiv:2203.17187 arXiv:2203.17058 arXiv:1805.04066

Cross section and A_{LL} of direct photons in p + p at 510GeV **BNL and RIKEN news release** A_N of π^0 in p+p and p+A A_N of heavy flavor decay electrons Flow in p + Au, d + Au, ³He+Au Low p_T direct photons in Au+Au at 39 and 62.4GeV **PRC Editor's suggestion** ϕ in Cu+Au and U+U ϕ in p+p,p+Al,d+Au, and ³He+Au Forward and Backward $\psi(2S)$ in p + p, p + Al, p + Au**PRC Editor's suggestion** π^0 in , p + Al, p + Au, d + Au, ³He+Au Suppression of high pT pi0 relative to direct photon in central d+Au A_N of charged hadrons in p+p and p+A Non-prompt direct photons in Au+Au 200 GeV R_{AA} of $b \rightarrow e$ and $c \rightarrow e$ $\mu\mu$, $e\mu$, ee correlations in p + p 200 GeV

9 papers published + 3 submitted4+1 papers in Journal review4 papers in internal review

$\psi(2S)$ suppression in p+Al, and p+Au

- Nuclear modification of $\psi(2S)$ in p + Al, and p + Au
- Forward (p-going):
 - smilar suppression of J/ψ and $\psi(2S)$
 - \rightarrow Shadowing dominance
- Backward (A-going):

Stronger suppression of $\psi(2S)$ than J/ψ suggests **presence of final state effects in** p + A

PH*ENIX

Rapidity • PRC Editor's suggestion

Unique capability of PHENIX

Low p_T direct photons

- Systematic measurement of direct photons in various systems and beam energy in wide pT range:
- Paper of measurement at 39 and 63 GeV was PRC editors suggestion.

Unique capability of PHENIX PH^{*} ENIX

Direct photon A_{LL}

PHYSICAL REVIEW LETTERS 130, 251901 (2023)

Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at $\sqrt{s} = 510 \text{ GeV}$ in $\vec{p} + \vec{p}$ Collisions

- Determined that the gluon polarization is positive
- This is one of the original goal of RHIC spin physics program
- BNL and RIKEN news release

Unique capability of PHENIX PH^{*} ENIX

Heavy Flavor A_N

- Measurement of A_N of heavy-flavor decay electrons
- Constraints on parameters of Tri-Gluon model by Z.Kang and J.W.Qiu
 - The first measurement on the model parameters (λ_f, λ_d) of the model

Unique capability of PHENIX

π^0 and direct photon in d+Au

New results shown in the Quark Matter 2023 (1)

Unique capability of PHENIX PHEE

New results shown in the Quark Matter 2023 (2)

 v_2 of direct photon in Au+Au

- v_2 of direct photon from RUN14. RUN16 data will double the statistic
- e^+e^- measurement in p+p is the proof of principle for IMR thermal $e^+e^$ pair measurement in Au+Au Unique capability of PHENIX PH

PHENIX publications

• 218 physics papers published/accepted

- Phys. Rev. Lett. 76
- Phys. Rev. C90
- Phys. Rev. D 46
- Nature Physics 1
- Phys. Letter B 4
- Nucl. Phys. A
- Total citation: ~33000
- Topcite 1000+
 - 500-1000 8
 - 250-500 21
 - 100-250 62
 - 50-100 48
- PHENIX White Paper: 3486 cites Jet quenching discovery: 1187 cites Nature P paper: 262 citations 141 physics papers in topcite 50+ (163 if proceedings and detector papers are included)

2

Cumulative Citations of PHENIX papers

PHENIX publications

Published PHENIX papers in each year

6 papers published in 2023, 5 papers under journal review

Award: S and T award by the Minister of MEXT

YA received

"Commendation for Science and Technology by the Japanese Minister of Education, Culture, Sports, Science and Technology (Research Category)"

for

"Research of high temperature and high density matter through relativistic heavy-ion collisions"

Analysis status

Datasets of PHENIX

year	Beam, E(GeV)	Recorded data (pp equiv)	upgrade	Physics
2016	AuAu 200 dAu 200 dAu 62,39,20	2.3/nb (90/pb) 15B events 1G & 73/nb (29/pb) 0.6G 0.1G, 8M	VTX,FVTX MPC-EX	Heavy Flavor Gluon nPDF Small QGP
2015	pp 200 pAu 200 pAl 200	23/pb 80/nb (16/pb) 275/nb (7.4/pb)	VTX, FVTX	Heavy Flavor Transverse spin CNM, small QGP
2014	AuAu 200, 15 ³ HeAu 200	2.3/nb (90/pb) 15 B events 25/nb (15/pb)	VTX, FVTX	Heavy Flavor Small QGP
2013	pp 510	240/pb	W-trigger	Anti-quark spin Gluon spin
2012	pp 510 pp 200 CuAu 200 UU 193	50/pb 4/pb 5/nb (60/pb) 0.17/nb (10/pb)	W-trigger VTX, FVTX	Anti-quark spin Transverse spin Heavy flavor Geometry
2011	pp 510 AuAu 200 AuAu 19, 27	28/pb 0.8/nb (32/pb)	W-trigger VTX	Anti-quark spin Heavy flavor BES-I
2010	AuAu 200 AuAu 62,39,7	1.1/nb (44/pb)	HBD	Low mass ee BES-I

nDST production is complete

Analysis map update: key analyses

On-Going Key analysis					
Topic .	Leading group .	Time line .			
R_{AA} of $b \to e$ and $c \to e$.	RIKEN; Nara Women .	Under review at PRC .			
v_2 of $b \to e$ and $c \to e_{\varphi}$	RIKEN; Nara Women .	Submit in 1 year .			
Flow of J/ψ .	Vanderbilt .	Submit in 1 year .			
High p_T direct photon in	Stony Brook, Debrecen .	Submitted to PRL.			
d+Au .		¢,			
High p_T direct photon in	Stony Brook, Debrecen	Preliminary by QM2023.			
p+Au »		Submit in 1 year .			
High p_T direct photon n He3+Au	Stony Brook, Debrecen.	Submit in 1 years.			
Direct photons R _{AA} in RUN14	Stony Brook .	Under review at PRC .			
Au+Au .					
Direct photon v2 in RUN14.	Stony Brook .	Submit in 1 year .			
Low p_T direct photons in	Stony Brook .	Submit in 2-3 years			
Cu+Au .					
Low p_T direct photons in small	Stony Brook .	Submit in 1 year .			
systems .					
Direct γ -hadron correlations in	Georgia State University .	Submit in 2-3 years.			
Au+Au(RUN14)					
IMR e^+e^- in RUN14+15+16.	Stony Brook .	Preliminary for pp for			
(AuAu and pp) ,		QM2023 .			
Heavy flavor single electron in	Baruch .	Publish in 1 year .			
p+Au .					
Heavy Flavor electron $A_{N^{\circ}}$	U. Michigan .	Published in PRD.			
$J/\psi \text{ vs } \underbrace{N_{ch} \text{ in } p+p}_{\circ}$	LANL, Pusan	Submit in 1 year .			
$\psi(2S)/J/\psi$ vs N_{ch} in p+p.	LANL, Pusan	Preliminary for QM2023.			
		Submit in 1 year .			
HF v2 in AuAu in RUN14+16.	Vanderbilt.	Preliminary by QM2023.			

Key analysis needs additional funding.

- $b \rightarrow e, c \rightarrow e \text{ with VTX (RUN14+16)}$
- $b \rightarrow \mu$, $c \rightarrow \mu$ with FVTX (RUN14+16).
- Intermediate mass dilepton (RUN14+16).
- As part of recommendation of the 2021 site visit, "analysis map" showing status and responsibilities of analyses was reported to DOE.
- This is the update of "analysis map" since the S and T review in November 2022.
- Heavy Flavor electron A_N was published on schedule
- High p_T direct photon in d+Au was submitted to PRL on schedule
- Other key analyses are making progress

Analysis map update: on-going analyses

On-Going analysis .					
Topic .	Leading group .	Time line .			
π^{\pm} , K^{\pm} , p , \bar{p} in $p+A$, ³ He+Au	St. Petersburg .	First release in 2023/08.			
$\pi^0 v_2$ in Cu+Au	St. Petersburg .	Preliminary 2023/03			
Centrality dependence of Levy	Etövös University .	Second release in			
HBT in Au+Au		2023/03; submit in 1 year .			
π^0, η and prompt photon in	Debrecen University .	Preliminary in half year .			
Au+Au (RUN14+16)					
$B \to J/\psi$ in $p + p$.	BNL .	Submit in 1 year.			
$B \rightarrow J/\psi$ in Au+Au	BNL «	Submit in 2 years.			
ϕR_{AA} in Au+Au(RUN14).	Georgia State University .	Submit in 1 year .			
ϕR_{pA} in small systems .	Georgia State University .	Submit in 1 year .			
π^0 – hadron correlations in	Georgia State University .	Two PPGs formed .			
Au+Au (RUN10+11+14)					
Jets in Cu+Au	Iowa State University .	Submit in 1 year .			
Jets in p+p,p+Al,p+Au	Iowa State University .	Submit in 1 year .			
π^0 , η in forward rapidity with	Iowa State University .	Submit in 1 year .			
MPC-EX in d+Au					
Forward EM cluster A_{LL} at	Stony Brook .	Preliminary in 1 year .			
510GeV .					
Forward neutron A_N at 63 and	Stony Brook .	Submit in 1 year .			
510 GeV .					
Midrapidity π^0 and ηA_N in	U. Michigan	Published in PRD -			
p + A at 200 GeV.					
Forward η cross section and	U. Michigan	Submit in 1 year .			
A_N at 500 GeV ,					
Forward hadron v2 in AuAu	Vanderbilt .	Preliminary in 1 year .			

- Midrapidity π^0 and ηA_N was published on schedule
- Other analysis are making progress
- We don't have a new analysis added to the list
- A few analyses are removed from the list due to lack of the resource
- Collaboration is working to completing the existing analyses.

Data and Analysis Preservation

PHENIX DAP Overview

- Data and Analysis Preservation (DAP) was prioritized in PHENIX in 2019, and in 2021-2022 we maintained steady progress in previously established work areas
 - The PHENIX website
 - Zenodo digital repository at CERN
 - The HEPData portal
 - REANA (the Reproducible Analysis framework)
- Significant progress in HEPData and REANA since S and T review 2022

HEPData

Formatting data for HEPData

- As part of DAP effort, PHENIX start publishing data in HEPData
 - New papers required to publish the data in HEPData
 - started publishing data of old papers, but progress was slow.
- August 2022: C. Nattrass (UTK) made supplemental grant proposal to cover undergraduate to format PHENIX data for HEPData.

UTK HEPData Team

Joseph Beller

Christal Martin

Micah Hillman

Tom Krobatsch

Nik Nelson

Graduated May 2023 head undergrad

Christine Nattrass Supervisor

Josie Hakanson

Andrew McAninch

Shannon Harris

Hugh Jones

20-25 undergraduates total, approximately 40% female and 30% URM. Pictures shown for significant contributors. Dozens of people helped with reviews but of note are: Cesar Da Silva (LANL), Krista Smith (LANL), Roli Esha (Stony Brook), Ron Belmont (UNC Greensboro), Axel Drees (Stony Brook), Takahito Todoroki (BNL/RIKEN), Takao Sakaguchi (BNL), Sasha Bazilevsky (BNL), Christine Aidala (UMich), Ralf Siedl (RIKEN)

PHENIX in HEPData

September 2023

- 192 total entries
 - 28 before 2020
 - 125 from UTK undergraduates
 - Plus 22 in progress
 - 39 from the previous effort
- Data of almost all of 218 PHENIX paper is to be published in HEPData

REANA

- REANA is a framework of analysis preservation
 - Analysis environment (libraries, etc) are in container (Docker)
 - Workflow in YAML
- In the S&T review, we reported that we started implementing full analysis chain of one of key analyses in REANA @ BNL
 - d+Au pi0 and direct photon
 - Implementation of data/analysis part is now completed

REANA

Copy of slide #8

- First PHENIX analysis in REANA
- This is one of the key results, now submitted to PRL
- Help from NPSS for implementation
- Input from analyzers is essential
- People

Maxim Potekhin Dmitry Smirnov Niv Ram Gabor David

REANA: d+Au analysis work flow

- Blue and Green steps are implemented in REANA
- Large scale production of Blue (DST->pDST) is by Taxi
- Green steps can be repeated in a few hours
- Detailed documentation in PHENIX DAP site

- The analysis page located at <u>https://www.phenix.bnl.gov/analysis/dAuPi0Photon.html</u> serves as the central hub for preserving PHENIX's "Direct y in d+Au collisions" analysis, ensuring its longevity and reproducibility over time
- The analysis steps outlined by the blue and green boxes in the flowchart have been encapsulated within a containerized environment, bolstering their future reproducibility
- The outputs of the PISA simulation steps (pink boxes) are presently drawn from Niveditha Ramasubramanian's original work
- Essential data, including response matrices, is uploaded into the <u>Zenodo repository</u>, accompanied by a unique DOL thus ensuring its enduring preservation

REANA: d+Au analysis

REANA: Lessons learned and Future Plan

- Implementing high level analysis of the d+Au direct photon and π^0 took about 6 months
 - \rightarrow needs heavy involvement from the actual analyzer
 - \rightarrow needs about 1 FTE on the BNL side
- Current d+Au implementation is just to reproduce the published results. Ideally, we want to preserve analysis such that the data can be re-analyzed in different ways. This requires further effort

Future Plans

- Implement more key analyses in the same level
 - $-J/\psi$ in dimuon arms (starting)
 - Di-electron and direct photons with conversion
 - Heavy flavor in central arms/VTX
- Requires resources and support to complete these plans

DAP: Needs dedicated resource

- PHENIX completed data taking in 2016
 - High statistic data in 2012-2016 remain to be analyzed
 - These data sets with unique PHENIX capability are still the best data sets for many important analysis
 - Preserving the knowledge to analyze the PHENIX data is essential to extract physics
- PHENIX effort sets precedent for sPHENIX and STAR as RHIC shut down in 2025
- DAP effort needs both of support of computing experts and physics analyzer
 - REANA implementation of the d+Au analysis required > 0.5 FTE x 6 months for both effort
- PHENIX is working on DAP, but its effort is limited by available resource
 - DAP effort cannot be sustained by volunteer work by collaborators
 - DAP competes for resource with other needs, and tends to be considered as "less urgent"
 - Even for a small amount, a dedicated resource will make a big difference

Summary

- PHENIX completed its data taking in RUN16
- Publication status
 - PHENIX continues to publish high impact results, but with reduced rate
 - Publishing ~8 papers per year
 - Focusing on topics with unique capabilities of PHENIX
 - More resources are needed for analysis and publication of key physics topics
 - Support to PHENIX analysis is essential to continue it
- Data and Analysis preservation
 - Publishing PHENIX data in HEPData --- almost complete
 - First attempt to preserve a full analysis chain in REANA
 - Dedicated resource is needed to continue this effort