

Run 23: July 18, 2023 Collisions: Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ Run: 24199032 Event: 878465

STAR Heavy-lon Highlights

Frank Geurts for the STAR Collaboration

Outline

- BES-2: statistics & production
- Recent papers: statistics and highlights
 - Light Flavor Spectra / UPC
 - Flow, Chirality, Vorticity
 - Correlations & Fluctuations
 - Hard Probes
- QuarkMatter '23

BES-2 Statistics & Production

2018	Start	Stop	Good	Target	Calib/Prod	RbyR QA	Centrality	Analysis
27 GeV	May 10 th	June 17 th	555 M	700 M	Produced	Completed	Completed	Published 7
3.0 FXT	May 30 th	June 4 th	258 M	100 M	Produced	Completed	Completed	Published 9
7.2 FXT	June 11 th	June 12 th	155 M	none	Produced	Completed	Completed	Preliminary
2019	Start	Stop	Good	Target	Calib/Prod	RbyR QA	Centrality	Analysis
19.6 GeV	Feb 25 th	April 3 rd	582 M	400 M	Produced	Completed	Completed	Preliminary
14.6 GeV	April 4 th	June 3 rd	324 M	310 M	Produced	Completed	Completed	Preliminary
3.9 FXT	June 18 th	June 18 th	52.7 M	50 M	Produced	Completed	Completed	Preliminary
3.2 FXT	June 28 th	July 2 nd	200.6 M	200 M	Produced	Completed	Completed	Preliminary
7.7 FXT	July 8 th	July 9 th	50.6 M	50 M	Produced	Completed		Preliminary
200 GeV	July 11 th	July 12 th	138 M	140 M	Produced	Completed	Completed	
2020	Start	Stop	Good	Target	Calib/Prod	RbyR QA	Centrality	Analysis
11.5 GeV	$Dec \ 10^{th}$	Feb 24 th	235 M	230 M	Produced			Preliminary
7.7 FXT	Jan 28 th	Jan 29 th	112.5 M	100 M	Produced	Completed		Preliminary
4.5 FXT	Jan29 th	Feb 1 st	108 M	100 M	Produced	Completed		Preliminary
6.2 FXT	Feb 1 st	Feb 2 nd	118 M	100 M	Produced	Completed		
5.2 FXT	Feb 2 nd	Feb 3 rd	103 M	100 M	Produced	Completed		
3.9 FXT	Feb 4 th	Feb 5 th	117 M	100 M	Produced	Completed	In progress	Preliminary
3.5 FXT	Feb 13 th	Feb 14 th	115.6 M	100 M	Produced	Completed	In progress	Preliminary
9.2 GeV	Feb 24 th	Sep 1 st	161.8 M	160 M	Produced	Ready		Preliminary
7.2 FXT	Sep 12 th	Sep 14 th	317 M	None				
2021	Start	Stop	Good	Target	Calib/Prod	RbyR QA	Centrality	Analysis
7.7 GeV	Jan 31 st	May 1 st	100.9 M	100 M	Produced	Completed	In progress	Preliminary
3.0 FXT	May 1 st	June 28 th	2103 M	2.0 B				
9.2 FXT	May 6 th	May 6 th	53.9 M	50 M				
11.5 FXT	May 7 th	May 7 th	51.7 M	50 M				
13.7 FXT	May 8 th	May 8 th	50.7 M	50 M				
17.3 GeV	May 25 th	June 7 th	256.1 M	250 M				
7.2 FXT	June 3 rd	July 3 rd	88.6 M	None				

Updates:

✓ Run-21 Au+Au 17.3 GeV: production finished
 ✓ Run-21 Au+Au 7.7 GeV: centrality completed
 ✓ Run-20 Au+Au 3.5, 3.9 FXT: centrality completed
 ■ Run-20 9.2GeV: run-by-run QA in progress
 ■ Run-20 11.5 GeV: run-by-run QA in progress

STAR Recent Publications

- 2022: 21 published papers
 6 PRL, 5 PRC, 5 PRD, 4 PLB, 1 EJPC
- 2023: 19+1 published and accepted
 - 5 PRL, 8 PRC, 3+1 PLB, 2 Sci/Nat, 1 JHEP
- Journal review: 10
 - collaboration review: 8; active GPCs: 31

3GeV FXT (Run-18): 10 papers
27GeV (Run-18): 8 papers

✓ 98% of STAR papers uploaded to HEPdata

• integral part of the publication workflow

 K^{*0} mesons in heavy-ion collisions

• Nature 614 (2023) 224

Light Flavor Spectra & UPC

- Measurements of dielectron production in Au+Au Collisions at Vs_{NN}= 27, 39, and 62.4 GeV, PRC **107** (2023) L061901
- Beam Energy Dependence of Triton Production and Yield Ratio (N_tN_p/N_d²) in Au+Au Collisions at RHIC, PRL **130** (2023) 202301
- K^0 production in Au+Au collisions at $Vs_{NN} = 7.7$, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan, PRC **107** (2023) 034907
- Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions, Sci. Adv. 9 (2023) 3903
- Measurement of ${}^{4}H4_{\Lambda}$ and ${}^{4}He4_{\Lambda}$ binding energy in Au+Au collisions at $Vs_{NN} = 3$ GeV, PLB **834** (2022) 137449

Entangled enabled interference

Tomography of ultra-relativistic nuclei with polarized photon-gluon collisions

Science Advances 9 (2023) 3903

Quantum interference enabled nuclear tomography:
a novel approach to extract the strong-interaction nuclear radii, which were found to be larger than the nuclear charge radii

BES-1 dielectron measurements

- BES-1 LMR dielectron program completed
- Models consistently reproduce LMR excess
- No significant $Vs_{\rm NN}$ dependence of the $dN_{\rm ch}/dy$ -normalized integrated LMR excess

÷

200

Binding energy of hypernuclei masses

- Charge symmetry breaking observed between triton and ³He
- Study hyper-nucleon (YN) interactions:
 - Λ is neutral: expect Λ -p and Λ -n interactions to be similar
 - however, binding energy difference $\Delta B_{\Lambda}^4(0_{gs}^+)$ between ${}^4H_{\Lambda}$ and ${}^4He_{\Lambda}$ much larger
- Ab initio chiral effective field calculations that include CSB effect claim $\Delta B_{\Lambda}^4(1_{exc}^+) \approx \Delta B_{\Lambda}^4(0_{gs}^+) < 0$
- confirmed by STAR using Au+Au at Vs_{NN} =3GeV data set

PLB 834 (2022) 137449

8

BES-1 :: K^{*0} measurements

- K^{*0} short-lived resonance (4.16 fm/c) → ideal candidate to probe hadronic phase between chemical and kinetic FO
 - competing rescattering and regeneration
 - measure the K^{*0}/K ratio in central Au+Au collisions
- K^{*0}/K observed to be smaller than in small systems (e.g., e+e, p+p)
- similar decreasing centrality dependence as in previous RHIC and LHC measurements
 - compare with φ/K ratio which is mostly independent from centrality
- in support of a dominance of K^{*0} hadron rescattering over regeneration
- estimate (lower limit) of lifetime between chemical and kinetic FO, assuming
 - all losses are due to hadronic rescattering
 - no regeneration

PRL 130 (2023) 202301

Light nuclei yield ratio

- ratio $N_t N_p / N_d^2$: sensitive to fluctuations of the local neutron density
 - enhancements relative to coalescence baseline
 - significance (0-10%)
 - 19.6 GeV \rightarrow 2.3 σ • 27 GeV \rightarrow 3.4 σ

>Constrain production dynamics of light nuclei and our understanding of QCD phase diagram

Light hadron production U+U @ √s_{NN}=193 GeV

- Comprehensive paper releasing $\pi^{+/-}$, $K^{+/-}$, (anti)proton spectra
 - various bulk observables, e.g. particle yields, <pT>, particle ratios,
- compared with published Au+Au @ $\sqrt{s_{NN}}$ =200 GeV and AMPT models
 - consistency with 200GeV measurements in similar <N_{part}> ranges
 - suggests that when combining all (different) initial state orientations of U+U collisions the resulting final state approximates what is observed in spherically symmetry nuclei, i.e. governed by <N_{part}>

Search for evidence or the baryon junction

- What carries baryon number?
 - valence quark vs baryon junction?

Model calculation

describe isobar data

slopes of net-p yields < PYTHIA/HERWIG

- Valence quark carry most of the momentum
- Junction carries lower momentum
 - enhanced baryon stopping ad midrapidit

Three tests:

- 1. net-B vs net-Q in isobar collisions
- 2. net-B in photonuclear collisions
- net-proton yield vs rapidity in hadronic Au+Au collisions

net-p yield described by $e^{-(1.32\pm0.32)\delta y}$ PYTHIA predicts $e^{-(2.43)\delta y}$

Simple valance quark picture not compatible with data

KEN

Flow, Chirality, and Vorticity

- Observation of Global Spin Alignment of φ and K^{*0} Vector Mesons in Nuclear Collisions, Nature **614** (2023) 244
- Collision-system and beam-energy dependence of anisotropic flow fluctuations, PRL **129** (2022) 252301
- Observation of Directed Flow of Hypernuclei ${}^{3}H_{\Lambda}$ and ${}^{4}H_{\Lambda}$ in $\sqrt{s_{NN}} = 3$ GeV Au+Au Collisions at RHIC, PRL **130** (2023) 212301
- Measurements of the elliptic and triangular azimuthal anisotropies in central ³He+Au, d+Au and p+Au collisions at Vs_{NN} = 200 GeV, PRL 130 (2023) 242301
- Beam energy dependence of the linear and mode-coupled flow harmonics in Au+Au collisions, PLB 839 (2023) 137755
- Search for the Chiral Magnetic Effect in Au+Au collisions at Vs_{NN} = 27 GeV with the STAR forward Event Plane Detectors, PLB 839 (2023) 137779
- Centrality and transverse momentum dependence of higher-order flow harmonics of identified hadrons in Au+Au collisions at $v_{s_{NN}} = 200 \text{ GeV}$, PRC **105** (2022) 64911
- Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at Vs_{NN} = 200 GeV, PRC 106 (2022) 34908
- Azimuthal anisotropy measurement of (multi)strange hadrons in Au+Au collisions at $Vs_{NN} = 54.4$ GeV, PRC **107** (2023) 24912
- Search for the chiral magnetic wave using anisotropic flow of identified particles at RHIC, PRC 108 (2023) 14908
- Event-by-event correlations between Λ (anti-Λ) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at Vs_{NN} = 27 GeV from STAR, PRC **108** (2023) 14909
- Global polarization of Λ and anti- Λ hyperons in Au+Au collisions at $Vs_{NN} = 19.6$ and 27 GeV, PRC **108** (2023) 14910

Global spin alignment of vector mesons

- Surprising pattern observed: ϕ -meson $\rho_{00} > 1/3$ by 7.4 σ
 - possible explanation with a strong vector meson field;
 - provides a potential new avenue for understanding the strong interaction at work at the subnucleon level 9/11/23 **BNL NPP PAC Meeting**

Search for the Chiral Magnetic Wave

- Look for differences in $v_{\rm 2}$ between positive and negatively charged particles
 - STAR comprehensive study; results include Au+Au Vs_{NN}= 27 200GeV, UU at 193GeV, and p/d+Au 200GeV
- at LHC, $r_2=d\Delta v_2/dA_{ch}$ slopes similar in p+Pb and Pb+Pb at 5.02TeV
 - suggests r₂ slopes in Pb+Pb not arising from CMW
- Potential difference in physics mechanism at RHIC vs LHC
 - could magnetic field strength at LHC drop faster than at RHIC energies?
- Compare small systems, p/d+Au with Au+Au, U+U
 - \succ r₂ measurements in small systems at RHIC compatible with 0
 - absence of CMW signal in small system -> supports decoupling B-field and 2nd order event plane

PRC 108 (2023) 014908

BES-2: Global hyperon polarization

- Polarization measured across wide range of beam energies
 - is there splitting between $P(\Lambda)$ and $P(\Lambda bar)$?
 - suggested from late-stage B-field
- High-statistics samples for Au+Au for 19.6 and 27 GeV
 - > upper limits for P(Abar) P(A) < 0.24% and < 0.35%, respectively $\stackrel{\otimes}{\prec}$
 - with (naïve) assumptions, B-field estimates B < 9.4x10¹² T and <1.4x10¹³ T, respectively
 - call for better theory understanding of late-stage B field, and higher statistics, and study of y-dependence

Global $P(\Lambda)$ correlation measurements

PRC 108 (2023) 014909

- Use event-by-event correlations between global Λ polarization measurements and CME observables in Au+Au at 27 GeV
- Covariance of $P_{\Lambda(bar)}$ and parity-even azimuthal correlator $\Delta \gamma = \gamma_{OS} \gamma_{SS}$ consistent with 0
 - correlations less than 10⁻⁴ but needs theory input to appreciate the significance in terms of CME

BES-1/2: Vs_{NN} dependence flow correlations

- BES-1 comprehensive measurement⁺ of v₂{k} k=2,4,6
 - comparison to model calculations and LHC suggest initialstate-driven fluctuations dominate the flow fluctuations
- BES-2 (27 and 54.4 GeV) Normalized Symmetric Cumulants⁺⁺
 - distinguish between different IS models
 - pin down T, μ_B dependence of specific shear viscosity η/s
- ➢ NSC(2,4) and NSC(2,3) nearly beam independent
 - consistent with significant role from IS effects

⁺PRL 129 (2022) 252301 ⁺⁺ PLB 839 (2023) 137755

BES-2 v_2 of identified particles

- azimuthal anisotropy of identified particles vs $p_{\rm T}$ and centrality
 - help put substantial constraints on transport and hydro models
- Run-17 54 GeV data for (multi)strange hadrons published

> n_q scaling of v₂ holds within 10%

- Preliminary BES-2 results at 14.6 and 19.6 GeV
 - indicate n_q scaling for multi-strange particles is violated

Elliptic & triangular flow in small-sized systems

PRL 130 (2023) 242301

Flow in O+O at 200GeV (preliminary, QM23)

- v_2 {4} drops faster than v_2 {2} in central O+O
- $\geq \epsilon_2{4}/\epsilon_2{2}$ from nucleon or quark Glauber model with clusters describe $v_2{4}/v_2{2}$ better than without

- Suggest an influence on eccentricity from subnucleonic fluctuations in small-sized systems
 - provide stringent constraints on the hydrodynamic modeling

Next: Run-21 d+Au data with forward upgrades to explore mid-mid vs mid-forward correlations

- First observation of significant hypernuclei directed flow in high energy nuclear collisions
 - Fixed target program: Au+Au at 3GeV
- Midrapidity v₁ slopes follow baryon number scaling
 - implying that coalescence is the dominant production mechanism
- Constrain hyperon-nucleon interactions at high baryon density

Correlations & Fluctuations

- Observation of Global Spin Alignment of phi and K^{*0} Vector Mesons in Nuclear Collisions, Nature **614** (2023) 244
- Beam Energy Dependence of Fifth and Sixth-Order Net-proton Number Fluctuations in Au+Au Collisions at RHIC, PRL 130 (2023) 82301
- Higher-order cumulants and correlation functions of proton multiplicity distributions in sqrt{sNN} = 3 GeV Au+Au collisions at the RHIC STAR experiment, PRC **107** (2023) 24908
- Energy Dependence of Intermittency for Charged Particle in Au+Au at RHIC, accepted by PLB

BES-1/2: Hyper-order Cumulant Ratios

PRL 130 (2023) 082301

- Higher-order cumulants more sensitive to correlation length
- Cumulant ratios cancel volume dependence
 - directly related to susceptibilities
- 7 200GeV: falling trend of with rising order $> C_3/C_1 > C_4/C_2 > C_5/C_1 > C_6/C_2$

predicted by LQCD

- 3 GeV:
 - rising trend with rising order
 - in agreement with UrQMD
 - suggestive of hadronic matter

Critical Point Search

No update from STAR on net-proton

lysis nearing completion and no major issues currently identified

Helen Caines @QM23

Net-proton analysis status at BES-II energies

Strategy:

- multiple analysis teams
- no preliminary releases
- collider energies and FXT each in single paper

near completion* √s_{NN} = 3.2 (FXT), 7.7, 14.6, 19.6, 27 GeV

pending* = due to unavailability of embedding Vs_{NN} = 3.5 (FXT), 3.9 (FXT), 4.5 (FXT), 9.2, 11.5, 17.3 GeV

Baseline calculations (UrQMD/CE) for all collision energies near completion

Hard Probes

- Elliptic Flow of Heavy-Flavor Decay Electrons in Au+Au Collisions at √s_{NN} = 27 and 54.4 GeV at RHIC, PLB 844 (2023) 138071
- Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at Vs_{NN} = 200 GeV, JHEP **176** (2023) 2023
- Measurement of sequential Upsilon suppression in Au+Au collisions at √s_{NN} = 200 GeV, PRL **130** (2023) 112301
- Evidence of Mass Ordering of Charm and Bottom Quark Energy Loss in Au+Au Collisions at RHIC, EPJC 82 (2022) 1150

Sequential Upsilon Suppression

- Υ(1S), Υ(2S), Υ(3S)
 - sizes: 0.28, 0.56, 0.78 fm
- Combined results from dimuon (Run-14-16) and dielectron channels (Run-10)
- At RHIC energies, negligible contributions from b and b-bar recombination
- Excellent probe to study color screening in QGP
- \succ magnitude $\Upsilon(1S)$ suppression comparable to LHC energies
 - R_{AA} vs p_T and centrality for Υ(1S) and Υ(2S)
 - upper limit for Υ(3S) suppression

Observe sequential Υ suppression at RHIC

PRL 130 (2023) 112301

Jet-hadron correlation with respect to event plane

Measure yields and widths in three categories, based on the angle between the trigger jet and the event plane:

Away-side $(2\pi/3 < \Delta \phi < 4\pi/3, |\Delta \eta| < 0.6)$

JEWEL compariso

Inclus.

ALL angles w/ recoils

ALL angles w/o recoils

In-plane
▲ Mid-plane

O Out-of-plane

4 6 8 p_{T, assoc} (GeV/c)

Background uncert

• Less than $\pi/6$ (in-plane)

Near-side $(-\pi/3 < \Delta \phi < \pi/3, |\Delta \eta| < 0.6)$

4 6 8 *p*_{T, assoc} (GeV/*c*)

15 < p_{T. iet} < 20 GeV/*c*

Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}, 20-50\%$ Anti- k_{T} full jets, R=0.4 $p_{Tacket}^{\text{track}}$ c, $E_{T, \text{ constit.}}^{\text{tower}} > 2.0 \text{ GeV}$

leading T constit > 4.0 GeV/c

- Between $\pi/6$ and $\pi/3$ (mid-plane)
- Greater than $\pi/3$ (out-of-plane)

Inclus.

4 6 8 p_{T, assoc} (GeV/c)

For near-side and away-side yields and widths:

***^**o

Inclus.

((GeV/c)⁻¹)

dN/dp____

width

Near-side v 0.1

2

no dependence on orientation of the jet axis with respect to the event plane is seen within the uncertainties in the kinematic region studied

Inclus.

2

 $(1/N_{trig})dN/dp_{T, assoc}$ ((GeV/c)⁻¹)

10-

4 6 8 p_{T, assoc} (GeV/c)

Measurement of in-medium jet modification using direct γ +jet and π^0 +jet correlations

First measurement of jet quenching via y+jet correlations in central Au+Au collisions at 200GeV

• based on previous STAR photon and jet measurements (mixed-events)

Comparison of γ and π^0 triggers:

- variation in q/g fraction of recoil population
- variation in geometric bias
- significant test of model calculations

submitted to PRL (2309.00156)

and PRC (2309.00145)

Jet shape: R-dependence of recoil jet yield

- Jet shape in pp well-described by PYTHIA
 - Jet shape broadened in central Au+Au for both triggers
- I_{AA}: R=0.5 compatible with unity
- new measurements of angular distribution of quenching-induced radiation
 not well-described by models

QuarkMatter '23 Conference

- Record number of STAR contributions
 - 24 parallel speakers
 - 45 contributed posters
 - 5 plenary speakers
 - incl. STAR highlights talk
 - 1 flash speaker (poster award)
 - 1 best presentation award
- Gender balance
 - internal abstract submission ~27% female
 - compared to STAR: 17 ± 5% ("juniors" 22 ± 6%)
 - STAR QM speakers (incl. plenary): 20%
 - compared to QM23 (parallel): 22%

Many STAR results featured in various plenary overview talks, cf. Rosi Reed's overview talk for the latest preliminary results: <u>https://indico.cern.ch/event/1139644/contributions/5343956/</u>

Summary

- STAR's publication record continues to be on a rise
 - large fraction of STAR collaborators is involved in the publication process
- First BES-2 publications from high-statistics 27, 19.6, and 3GeV
 - 10 papers that include results from 3 GeV (FXT, 2018)
 - 8 papers that include results from 27 GeV
 - 1 paper that includes results from 19.6 GeV
- Production of all BES-2 collider data finished
 - FXT production (2021) underway
- Net-proton analyses:
 - no release preliminary results
 - publications for collider energies in ~6 months
- Many preliminary results from all BES-2 collider energies at QM'23
 - next: prepare for publications
 - continue to rely on involvement of the full collaboration
 - continue to rely on the support from BNL

of Publicatio

STAR at QuarkVatter 2023

uark Matter 2023

www.uarkMatter 2023

The 30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Houston, Texas 3-9 September 2023

N ATA 🚳 🍘 🙆 🧿