

sPHENIX Tracker 2023-08-23, Run 25926 - All EBDCs, BCO 128330850911 0-Field Cosmics Data

sPHENIX commissioning and integration and plan for first science

David Morrison (BNL) Gunther Roland (MIT)

co-spokespersons

Une 2022

April 2023

Some of the many students and postdocs working on sPHENIX ...

sPHENIX ribbon cutting January 2023

Asmeret Berhe DOE Director Office of Science

Vanessa Chan DOE Director Office of Technology Transitions

Smooth sailing? Successful sailing.

- PD-2/3 schedule included 14 months of float, early finish in October 2021
- Direct effects of COVID workforce availability, construction logistics
- Indirect effects of COVID electronics lead time
- Conflict in Ukraine necessitated switch from neon to argon for TPC
- Logistics around Run 22
- Beryllium beam pipe •
- Complex process readying for DOE's Approval to Operate decision

From installation to commissioning with beam

Received approval to operate on May 18 (operating gas, HV, LN2/LHe) SC solenoid cool-down May 19–25; ramped to operating current May 31

Plan presented in 2022 BUR

Weeks	Designation	
0.5	Cool Down from 50 K to 4 K	
2.0	Set-up mode 1 (Au+Au at 200 GeV)	
0.5	Ramp-up mode 1 (8 h/night for experiments)	
11.5	sPHENIX Initial Commission Time	
9.0 (13.0)	Au+Au Data taking (Physics)	
0.5	Controlled refrigeration turn-off	
24.0 (28.0)	Total cryo-weeks	

May 18 + 12 weeks: August 10 End of RHIC beam: August 1

The success of our commissioning period would not have been possible without the dedicated support by C-AD and their flexibility in accommodating our requests

		Implicit assumption:				
Weeks	Details	infrastructure is rea				
2.0	low rate, 6-28	bunches				
2.0	low rate, 111 bunches, MBD L1 timing					
1.0	low rate, crossing angle checks					
1.0	low rate, calorimeter timing					
4.0	medium rate, TPC timing, optimization					
2.0	full rate, syste	m test, DAQ throughput				
12.0	total					

Into the home stretch: "Approval to Operate"

- Major focus was safety: documentation, procedures, interviewing shift crew, electrical code inspections, signage & labeling, hand rails, walking surfaces, and many other things
- For some of us, unfamiliar review territory — about nine weeks to complete
- Received approval from Brookhaven DOE site office on May 18 — fantastic!

Transition from project to operations

sphenix control room

Commissioning report

- Infrastructure e.g., the SC solenoid
- Ten detectors: MVTX, INTT, TPC, TPOT, EMCal, iHCal, oHCal, MBD, sEPD, ZDC/ SMD
- DAQ/Trigger •
- Operations •
- Online monitoring
- Offline computing archiving, event assembly, reconstruction, analysis

ent on commissio
tag: version: 0.1 DOI: unspecified date: August 16, 2023
t 2023
with the receipt of approval to
g can begin.

Commissioning report synopsis

- SC magnet: **complete**
- Min Bias Detector: **complete** •
- Outer HCal: complete
- Inner HCal: complete
- EMCal: complete
- TPC outer tracker: **complete**
- ZDC: complete •
- INTT: triggered mode **complete**, testing streaming mode

- MVTX: successful operation; response to backgrounds underway
- TPC: operating HV achieved, tracks observed; work on stability of operations
- DAQ: all detectors have been read out; work continues on stability and rate
- SMD: some channels still to read out
- sEPD: successful readout; detector • and electronics installation completed after August 1 end of run

Commissioning continues — 'round the clock shifts scheduled through October 3

Superconducting magnet — works perfectly

Very stable operation after faulty QLI ribbon cable replaced

										10 K
									\rightarrow	9.5 K
										9 K
										8.5 K
										8 K
										7.5 K
										7 K
										6.5 K
										5.5 K
										5 K
										4.5 K
										4 K
										3.5 K
										3 K
										2.5 K
										2 K
	Magn	et off	for sE	PD i	nstal	latior]			1.5 K
										1 K
										0.5 K
										0 K
07/12	07/14 07	/16 07	/18 07/:	20 07	7/22	07/24	07/26	07/28 (Min: 4 70 K	07/30	90 V
лал. 4.02 КА						nperature	Last 1. 4.00 P	V 10111. 4.79 K	Max: 4.6	09 N

Crossing angle studies: MBD determines σ_{z-vert}

Effect on z-vertex distribution as expected More severe effect on luminosity than predicted

n.b. fewer collisions outside of useful z_{vertex} range reduces TPC charge dependent calibrations

Global detectors: ZDC, MBD, s_ _

Hadronic Calorimeter

Electromagnetic calorimeter

>99% live channels; growth of SiPM leakage current consistent with expectation

reconstructed di-photon mass — in ADC counts — peak corresponds to π^0

Calibrating the calorir

;ale

MAPS vertex detector (MVTX)

Correlation multiplicities in two outermost MVTX layers, across multiple FELIX cards

Primary vertex location: INTT and MBD

INTT Number of clusters

Standalone MVTX vertex reconstruction

Three layers of MVTX used to reconstruct primary and secondary vertex

SPHE

Cosmic data in MVTX and INTT

SPHE

MVTX, INTT, and TPOT

Helical fit to cosmic tracks in 1.4 T solenoidal magnetic field

sPHENIX Experiment at RHIC

sPHENIX Time Projection Chamber 100 Hz ZDC, MBD Prescale: 2, HV: 4.45 kV GEM, 45 kV CM, X-ing Angle: 2 mrad 2023-06-23, Run 10931 - EBDC03 reference frame 85 Au+Au sqrt(s_{NN})=200 GeV

Initial validation of TPC drift velocity

First TPC data with collisions were used to validate the calculation of the gas drift speed to within 10%

ionization arrives over this time window

Operational challenges with TPC

- Post-installation TPC exhibiting challenges with HV stability not present in extensive preinstallation system tests
- Met with ALICE TPC experts to discuss experience — both TPCs share similar design
- Continuing to step through specific plan of investigation and possible remediation

Operational challenges with MVTX

Beam halo at r > 2 cm enough to overwhelm the readout and turn off chips after a few seconds of running

12:45

σ

12:44

time

Acquired few minutes of $\beta^* = 5m$ data just before RHIC valve box incident

Nine ALPIDE chips of one MVTX stave

after collimation

white: in recovery

Offline event assembly and reconstruction

- Worked with SDCC to address infrastructure-level stability issues with large disk array (Lustre)
- Have used ATLASdeveloped PanDA to successfully run our complex workflow to assemble and reconstruct events for analysis
- Still require collision and corresponding laser data to validate TPC distortion correction

Remaining tasks

- Tremendous progress before/during Run 23 - at the same time, quite a bit still needs attention
- TPC investigations and remediations
- MVTX firmware mods to decrease reset • time — possible tungsten beam pipe collar?
- Exercise computing facility with archived data and simulations to further validate and automate processing infrastructure
- Significant cosmic running prior to • Run-24 for alignment and to validate tracking

Table 6 in commissioning document

System	Before Run 2024	During Run 2024
Trigger	Firmware and software development of calorimeter triggers	First operation of calorimeter triggers with beam
TPC	 FEE firmware completion tests of zero suppression completion of MJACK to mitigate SEU development of digital current cosmic ray data with and without zero suppression 	 Stable operation with HV collision data with and without zero suppression testing of digital current and SEU mitigation
DAQ	 Tests with zero suppression in calorimeters and TPC Throughput and livetime tests with multievent buffering Development of offline event building Any additional development needed to achieve routine 15 kHz Improvements in reliability, data integrity, and error handling 	 Tuning of zero supression Timing of detectors to new triggers Spin: integrate ZDC, SMD and MBD digital scaler information into GL1
MVTX	 Field off cosmic data for tracking development and alignment Development of mitigation strategies for background and lock-up 	 Field off and field on collision data for tracking development and alignment Tests of mitigation strategies for background and lock-up
INTT EMCal HCal	Field off cosmic data for tracking development and alignment(HCal) tower-by-tower cosmics analysis	Field off and field on collision data for tracking development and alignment Demonstration of design energy reso- lution and response uniformity

Pushing toward first science

Coordinating the effort toward first science

- Physics coordination meetings cuts across topical groups
 - Identifying topics that can be pursued with available Run 23 data
 - Identifying workforce to tackle specific analyses
 - Coordinates with simulation and computing effort sufficient computing power is available to support needed activities
- Topical group conveners are organizing post-QM "kick-off" meetings for a jet performance paper, dN/d\eta, dE_T/dη, and $\pi^0 v_2$ and other topics

Timeline for first sPHENIX science

- Complicated by premature end to Run-23 •
 - Lack planned six weeks of physics data (n.b. fewer than the 9 weeks in 2022 BUR) •
 - Reduced data available for systematic checks, calibration development
- Recall previous experience ~ six months from first RHIC run to QM'01
- Many performance plots shown at QM'23 ٠
- First "standard candle" soft physics ($dN/d\eta$, v_n) end of CY'23
- Unique RHIC capabilities (e.g., unbiased jets) longer timescale •
 - detailed jet performance studies end of CY'23 •
 - taking cosmic ray data for alignment and validation of data processing

Ingredients for first sPHENIX science

- event selection and centrality determination
- event plane determination: MBD event plane resolution
- primary and secondary vertex location: INTT and MVTX reconstruction
- π^0 , η : EMCal clustering, energy calibration
- jets: energy calibration, background subtraction, jet finding, data based UE subtraction
- systematically performing calibrations and reconstruction steps needed for first physics
- even with the limited data set: wide range of standard candle measurements that can be • performed, and in-roads to be made towards full calorimeter jet physics at RHIC
- this effort needs to be balanced with preparations for Run-24

Au+Au centrality and event plane based on MBD

Calorimetric jets — EMCal, iHCal, and oHCal combined

sPHENIX Run/Event: 21615 / 1362 Collisions: Au + Au @ $\sqrt{s_{NN}}$ = 200 GeV Peripheral Collision

> OHCAL IHCal EMCal

Initial tracking performance

Cluster residuals before static and time-dependent corrections in the expected sub-cm (**z**) and mm (**rφ**) ranges — TPC only

What do we need to progress to Run 24 successfully?

- access that is currently planned
- mods for TPC and INTT
- implement (e.g., tungsten beam pipe collar)
- tools for collaboration information management

• Continued priority in technical support and trade work — e.g. for detector

• Electrical engineering support from ATRO — critical for completing firmware

Engineering support for MVTX background mitigation plans we may decide to

Support for Invenio development (e.g., search on document content) and other

Summary, concerns, prospects

- collaboration with students/postdocs taking major roles
- collaboration workforce implications
 - Will have open forum on Friday within collaboration to discuss this; ALD has questions
- continuing now
- Plan of work leading to Run-24 described in commissioning document
- Standard candle physics soon; detailed studies with data to prepare for

Tremendous progress readying sPHENIX for physics — lots of excitement throughout

Concerned about near-term morale, job prospects of students/postdocs — potential

welcomed a subsequent discussion to be able to share her perspectives and field

• There are unfinished commissioning activities - activities that can done w/o beam are

43

sPHENIX Project Summary Schedule

OLIENIX MIE (4.0) Drojoct	FY16	FY17	FY18	FY19	FY20
SPRENIX WIE (1.0) Project		>		<u> </u>	
Ochedule	V V		V	V	
	CD-0 (A)	Sep 16	CD-1/3A (A) Au	g 18 PD-2/3	Jul 19
Design			Preliminary an	d Final Design	
Procurement					
TPC		Pre-Proc	I Procurement	Prod. TF	PC Procurement
EMCal		Pre	-Prod Procurement	LLP EMCal P	rocurement
HCal		Pre	-Prod Hcal Procurem	ent Prod. HC	al Procurement
Calorimeter Electronics		Pre	-Prod Procurement	LLP Cal Flect	Procurement
DAQ/Trigger			Pre-Prod Proc	urement DAC Trig	ger Procurement
Min Bias Detector		Pre-Prod	Procurement	Prod Pro	
Fabrication & Assembly					
TPC		Pre-Proc	TPC Fabricatio	on & Assemb <mark>ly Pro</mark> duct	ion
EMCal		Pre	-Prod EMCal Fabrica	ition & Assembly F rodu	uction
HCal		Pre-Prod	HCal Fabrication	on & Assembly Produc	tion
Calorimeter Electronics		Pre	-Prod Cal	orimeter Elec <mark>t. Fabrica</mark>	
DAQ/Trigger			DAQ/Trigger F	abrication & Assembly	
Min Bias Detector			Min	Bias Detector Fab	& Assy
Firmware Development				TDO	_
				IPC	
EMCal					—
Calorimeter Electronics					—
				DAO/Trigger Progra	mming
Min Bias Detector					
System Testing					
TPC				TPC System Te	estina
EMCal				EMCal System	Testing
HCal				HCal System Testing	l
Calorimeter Electronics				Calorime	ter Elec.System Te
DAQ/Trigger				DA	D/Trigger System]
Min Bias Detector				Min Bias	Det System Testir
2.0 Infrastructure Facility Upgrade			Design	, Procure, Fab	Assembly a
3.0 Silicon Detectors			Design	, Procure, Fab, A	ssembly, Inte
RHIC Runs					
Legend	(A) Actual	Complete	ed Planned	Today	

May 28-30, 2019

Critical Path runs through:

- Cal Elect. Preprod. Procure
- Cal. Elect. Fab/Assy
- Cal Elect. Sys. Testing
- EMCal Fab/System Testing
- Early Completion
- Installation, Integrated Test and Commissioning

