Machine Learned Simulations (Derek Glazier, Glasgow)
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Aim: Produce very fast simulation results via Neural Networks and Decision Trees.
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Users supply their own truth and reconstructed events from full simulations to train the machine learning algorithms

to produce replicable outputs as a fast alternative for full simulations.

This interface is based around CERN ROOT libraries and interactive SSs physics > Data Analysis, Statistics and Probability

[submitied on 22 Jul 2022]

running training and predictions in the python ecosystem; the RDataFram
between ROOT and Python sessions, while providing fast filtering and plc

Machine Learned Particle Detector Simulations

D. Darulis, R. Tyson, D. G. Ireland, D. I. Glazier, B. McKinnon, P. Pauli

We provide some C++ classes for automating the training and Python scr

The use of machine learing algorithms s an attractive way to produce very fast detector simulations for scattering reactions that can otherwise be computationally expensive. Here we develop a

factorised approach where we deal with each particle produced in a reaction individually: first determine if it was detected (acceptance) and second determine its reconstructed variables such as.

using tensorflow, keras and scikit-learn.

four momentum (reconstruction). For the acceptance we propose using a probability classification density ratio technique to determine the probability the particle was detected as a function of

many variables. Neural Network and Boosted Decision Tree classifiers were tested for this purpose and we found using a combination of both, through a reweighting stage, provided the most

https://github.com/dglazier/macparticles

sration, based on nearest neighbour or decision trees was developed. Using a toy parameterised detector we
1ematic distributions from a physics reaction. The relatively simple algorithms allow for small training overheads whilst
ta include Toy-MC studies of parameter extraction, preprocessing expensive simulations or generating templates for
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Figure 11: Results of applying a neural network with a Gaussian transform for acceptance modelling with a BDT
correction. The BDT used 100 weak learners with a maximum depth of 10 and a learning rate of 0.1. The network used
is the higher capacity model with 4 hidden layers of 512, 256, 128, and 16 neurons respectively. The improvement in
the 3-vector component distributions is smaller than in the case of the low capacity network.
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Figure 20: The
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Figure 26: Accepted and reconstructed physics variables for the Fast (blue) and Toy (red) simulations of the 2 pion
photoproduction reaction. The distributions show: the invariant mass of the three final state particles, W; the invariant
mass of the two pions, M (27); the production angles in the centre-of-mass system (cos(6car ), ¢oar); and the decay

angles of the two pions.

Approximate ML simulations are ideal for Physics
scoping, background simulationms,..
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Full reaction simulations may require corrections
due to correlations (trigger, PID..)

Scope for switching resolutions to GANs
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