Machine-Learning for Roman
Pots Reconstruction

David Ruth, Alex Jentsch, Sakib Rahman
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* Current dynamic method performs well but
only at high x;
(Xdet,Yaet.) * Performance also suffers for high P,
e Assumes linearity to work
e Assumes particles are coming from the center
of the main detector
* Complex study needs to be re-done for every

change in beamline configuration

* Transfer matrix gives info on transport through * Try machine learning application instead
the various magnets between IP and RP Detectors
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* Framework: PyTorch
* Architecture: Multi-Layer Perceptron
* 5 Independent Models:
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0.15 * 5 Hidden Layers, 128 Neurons

010 * Loss Function: Huber Loss

* Optimizer: Adam
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* Performance is excellent for P, and shows little
dependence on x,

e P, performance is good, but needs further
optimization, and performance still slightly worse at
low P,

e Currently trying to run network on ifarm at Jlab, but
not straightforward to use these computing

resources — may have to use JupyterHub
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