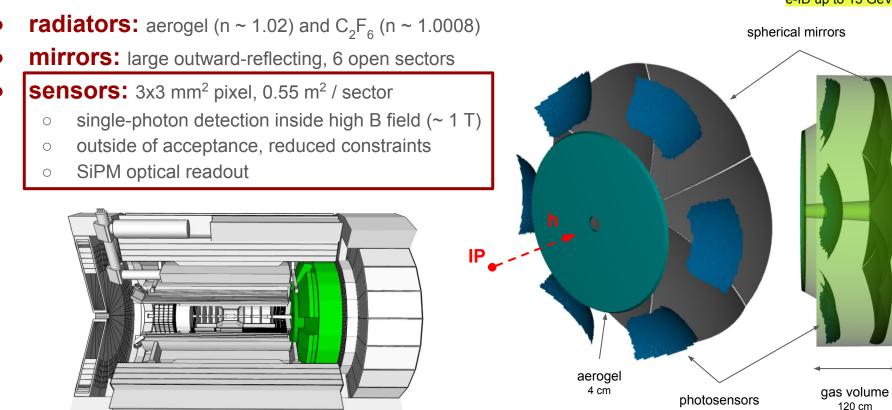
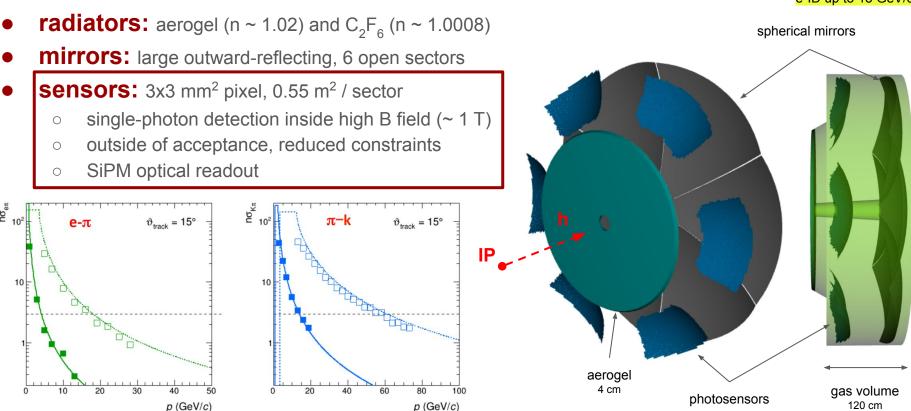


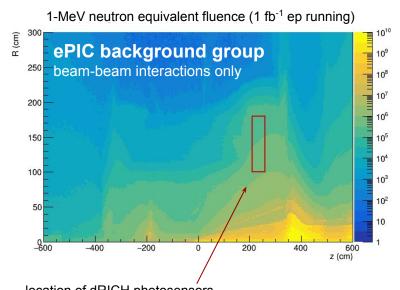
dRICH photosensors and electronics


Roberto Preghenella INFN Bologna

on behalf of the dRICH Collaboration

compact and cost-effective solution for broad momentum coverage at forward rapidity

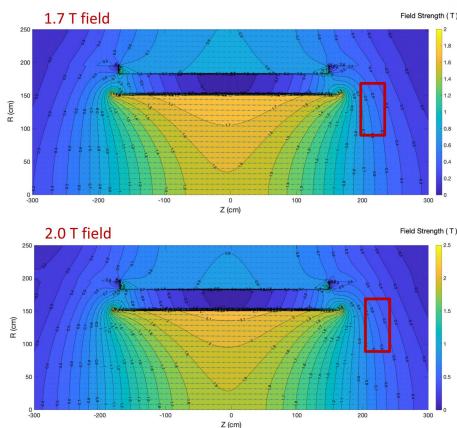

p = [3.0, 50] GeV/c η = [1.5, 3.5] e-ID up to 15 GeV/c


compact and cost-effective solution for broad momentum coverage at forward rapidity

p = [3.0, 50] GeV/c η = [1.5, 3.5] e-ID up to 15 GeV/c

Environment

radiation damage estimates


location of dRICH photosensors **assume fluence:** ~ 10⁷neq / cm² / fb⁻¹

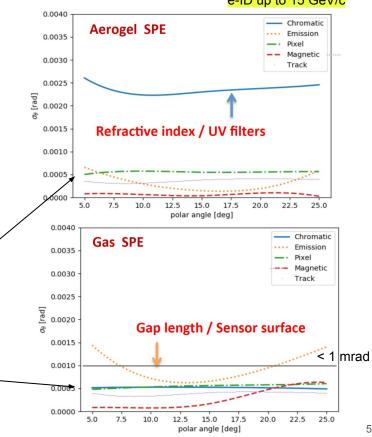
conservatively assume max fluence and 10x safety factor

moderate radiation, 1000 fb⁻¹ integrated £ corresponds to ~ 10¹⁰ n_{eq}/cm²

MARCO magnetic field maps

non-uniform, strong magnetic field ~ 0.7 T field lines ~ parallel to photodetector surface

compact and cost-effective solution for broad momentum coverage at forward rapidity


p = [3.0, 50] GeV/c η = [1.5, 3.5] e-ID up to 15 GeV/c

- radiators: aerogel (n ~ 1.02) and C_2F_6 (n ~ 1.0008)
- mirrors: large outward-reflecting, 6 open sectors
- **sensors:** 3x3 mm² pixel, 0.55 m² / sector
 - single-photon detection inside high B field (~ 1 T)
 - o utside of acceptance, reduced constraints
 - SiPM optical readout

3x3 mm² pixel size optimises performance and number of SiPM / electronics readout channels

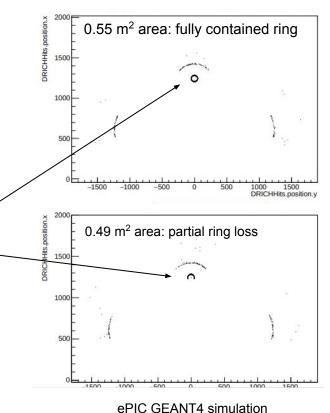
not the dominant contribution to the resolution

- → will not benefit from smaller size pixels
- → performance requirements already met bigger pixel size will have impact on gas
- → will start becoming dominant contribution

compact and cost-effective solution for broad momentum coverage at forward rapidity

p = [3.0, 50] GeV/c $\eta = [1.5, 3.5]$ e-ID up to 15 GeV/c

- **radiators:** aerogel (n ~ 1.02) and C_2F_6 (n ~ 1.0008)
- mirrors: large outward-reflecting, 6 open sectors
- **sensors:** 3x3 mm² pixel, 0.55 m² / sector
 - single-photon detection inside high B field (~ 1 T)
 - outside of acceptance, reduced constraints
 - SiPM optical readout

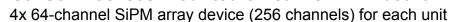

readout surface area of $\sim 0.55 \text{ m}^2$ / sector required to fully contain rings at extreme pseudorapidities

high eta = most demanding for PID

- → large number of photons
- → no acceptance losses

 0.55 m^2 / sector x 6 sectors (3x3 mm² pixels)

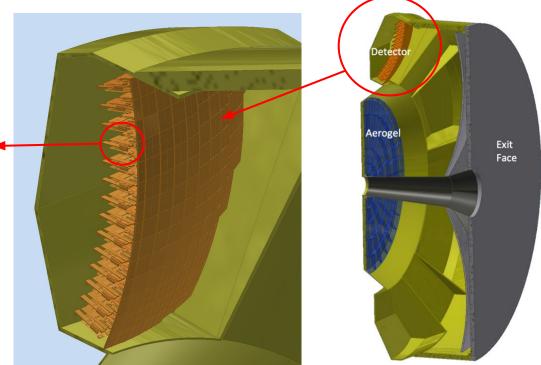
 \rightarrow 3.3 m² of instrumented area (~ 317 k SiPM channels)



Photodetector unit

conceptual design of final layout

SiPM sensor matrices mounted on carrier PCB board



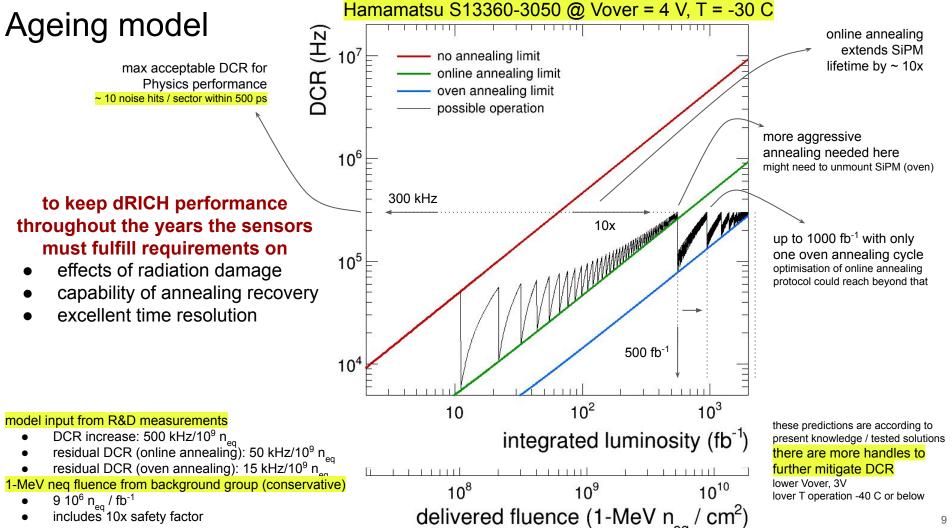
need modularity to realise curved readout surface

1240 photodetector units for full dRICH readout

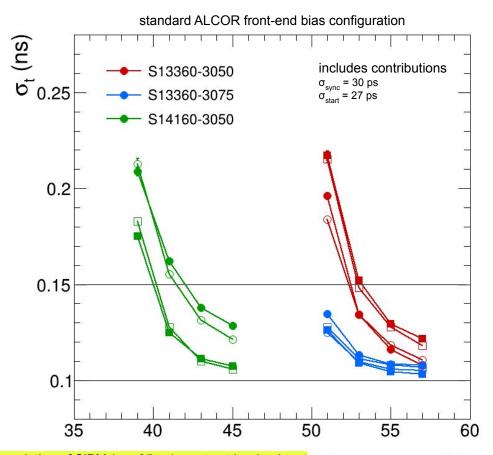
4960 SiPM matrix arrays (8x8)

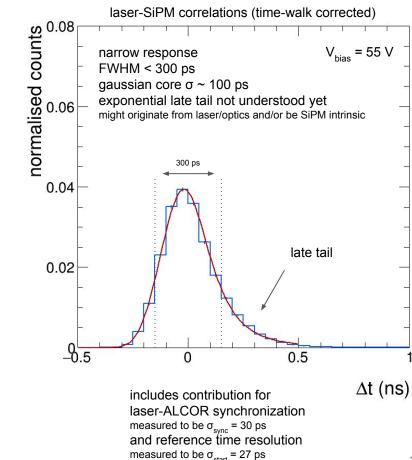
o 317440 readout channels

baseline sensor device


64 (8x8) channel SiPM array 3x3 mm² / channel

SiPM technical specs


Parameters	Value	Notes (all parameters at the recommended operating voltage and T = 25 C, unless specified)
Device type	SiPM array	
Number of channels	64	8 x 8 matrix
Active Area	3 x 3 mm ²	active area of one channel, total active area is 64 x 3 x 3 mm ²
Device Area	< 28 x 28 mm ²	device area should be small such as to have > 75% fraction of active area over device total area
Pixel Size	40 - 80 um	pitch of the microcell SPAD
Package Type	surface mount	
Operating voltage	< 64 V	
Peak Sensitivity	400 - 450 nm	
PDE	> 35%	at peak sensitivity wavelength
Gain	> 1.5 106	
DCR	< 1.5 MHz	
Temperature coefficient of Vop	< 60 mV / C	
Direct crosstalk probability	< 10%	
Terminal capacity	< 600 pF	
Packing granularity		
Vop variation within a tray	< 300 mV	Vop variation between channels in one device
Recharge Time	< 100 ns	ctau recharge time constant
Fill Factor	> 70%	
Protective Layer	silicone resin (n = 1.5 - 1.6)	radiation resistant, heat resistant (up to T = 180 C)
DCR at low temperature	< 10 kHz	at T = -30 C
OCR increase with radiation damage	< 1 MHz / 10 ⁹ neq	at T = -30 C, after a radiation damage corresponding to 109 1-MeV neutron equivalent / cm² (neq
Residual DCR after annealing	< 25 kHz / 10 ⁹ neq	at T = -30 C, after a radiation damage of 109 neq and a 150 hours annealing cycle at T = 150 C
Single photon time resolution	< 200 ps FWHM	corresponding to < 85 ps RMS

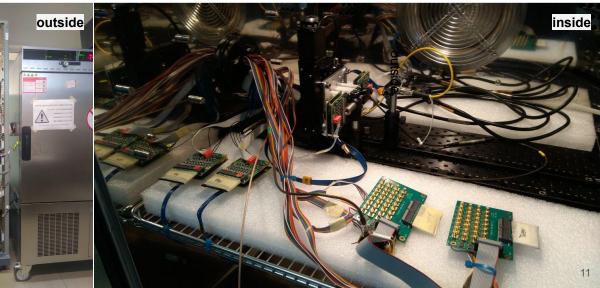

very important
parameters to
ensure detector
performance over
the years

we will evaluate as part of QA, testing sensor samples in received batches

Timing performance measurements with ALCOR

Characterisation setup

- climatic chamber
 large volume low-temperature operation
- source meter & multiplexers automatic IV characterisation of 80 SiPM channels
- picosecond pulsed laser
- complete readout chain automatic DCR and full readout of 128 channels


characterisation setup to be expanded for QA testing ~ 300 SiPM / day (25% of production over 2 years) more setups (2-3) to be deployed (reach ~ 100%)

Repeated irradiation-annealing cycles

test reproducibility of repeated irradiation-annealing cycles

simulate a realistic experimental situation

- consistent irradiation damage
 - ODCR increases by ~ 500 kHz (@ Vover = 4)
 - after each shot of 10⁹ n_{eq}
- consistent residual damage
 - ~ 15 kHz (@ Vover = 4) of residual DCR
 - builds up after each irradiation-annealing

annealing cures same fraction of newly-produced damage

~ 97% for HPK S13360-3050 sensors

Summary

dRICH SiPM option fulfills dRICH requirements

- magnetic field limitations
- excellent timing and efficiency
- despite high DCR and not radiation tolerant

technical solutions to mitigate radiation damage

- low temperature operation
- online "in-situ" self-annealing
- extend lifetime of good detector performance for Physics

technical specs for the device are identified

- 8x8 matrix array of 3x3 mm SiPM channels (~ 317 kchannels)
- o large SPADs, high PDE, high gain, good time resolution
- low DCR is a very important asset that will be closely monitored by QA
 - tests on batch samples to evaluate radiation damage / recovery throughout production

clear path towards TDR

- mating prototype electronics already exists
- ALCOR front-end ASIC chip developed by INFN