

# Cooling Design Update

Dan Cacace, Tim Camarda, Roland Wimmer, Rahul Sharma, Elke Aschenauer

### ePIC Detector Electronics ASIC & FE Board Electronics Power Summary

### Detailed Estimate of LV Power (example Si MAPS)

| 18 AWG, 4 cond.<br>Cable Ø 9.0mm |           |                    |                                        |                       |                                              |                              |                    |                                                               |       |                        |                               |                                |              |                |                |                                |                             |          |                                      |                       |                      |                                     |
|----------------------------------|-----------|--------------------|----------------------------------------|-----------------------|----------------------------------------------|------------------------------|--------------------|---------------------------------------------------------------|-------|------------------------|-------------------------------|--------------------------------|--------------|----------------|----------------|--------------------------------|-----------------------------|----------|--------------------------------------|-----------------------|----------------------|-------------------------------------|
| Detector Layers(s)               | # Sensors | series<br>(arrays) | No.<br>sensor<br>arrays in<br>parallel | Cable<br>load<br>Amps | 18 AWG AL<br>Ampacity<br>@30°C<br>enviorment | Cable<br>Derated<br>Ampacity | Cable%<br>Ampacity | LV cables<br>from dist.<br>panel to<br>detector (4-<br>cond.) | pairs | PDB Type<br>(channels) | No. of<br>PWR dist.<br>Panels | No. of<br>power<br>feed cables | Amps<br>Used | Supply<br>Amps | % Amps<br>Used | Supply<br>Voltage /<br>channel | V-<br>Drop/<br>25'<br>cable | Power(W) | Power<br>Estimate<br>(used)<br>Watts | LV<br>Modules<br>req. | LV<br>Crates<br>req. | 19"<br>Equipment<br>rack space<br>% |
| sagitta L3                       | 450       | 2                  | 2                                      | 1.7                   | 4.5                                          | 2.88                         | 59.03%             | 57                                                            | 2     | 8                      | 8                             | 16                             | 194          | 320            | 60.56%         | 2.4                            | 1.1                         | 465.1    | 621                                  | 8                     |                      |                                     |
| sagitta L4                       | 1092      | 4                  | 2                                      | 1.7                   | 4.5                                          | 2.88                         | <b>59.03</b> %     | 69                                                            | 2     | 8                      | 9                             | 18                             | 235          | 360            | 65.17%         | 4.8                            | 1.1                         | 1127.0   | 1,503                                | 9                     |                      |                                     |
| E disk                           | 1100      | 3                  | 2                                      | 1.7                   | 4.5                                          | 2.88                         | <b>59.03</b> %     | 92                                                            | 2     | 8                      | 12                            | 24                             | 313          | 480            | 65.17%         | 3.6                            | 1.1                         | 1127.0   | 1,503                                | 6                     |                      |                                     |
| H disk                           | 1100      | 3                  | 2                                      | 1.7                   | 4.5                                          | 2.88                         | 59.03%             | 92                                                            | 2     | 8                      | 12                            | 24                             | 313          | 480            | 65.17%         | 3.6                            | 1.1                         | 1127.0   | 1,503                                | 6                     |                      |                                     |
| Total                            | 3742      |                    |                                        |                       |                                              |                              |                    | 310                                                           |       |                        | 41                            | 82                             | 1,054        | 1,640          | 64.27%         | N/A                            |                             | 3,846.1  | 5,130                                | 29                    | 3                    | 70%                                 |

Si Disk Power Summary

|                             | # Sensors<br>Electron +<br>Hadron | Voltage<br>Required | Current<br>(A) | Power(W) | Power<br>Total +<br>Losses | Cable count<br>from LV<br>distribution | Cable type/ PN   | Cable Rating | No. of LV<br>Dist Panels | PS Model | LV<br>Module<br>Qty. | LV System<br>Ampacity | %Ampacity<br>Used | PS Location | Rack space<br>required(u) | Rack Cooling             |
|-----------------------------|-----------------------------------|---------------------|----------------|----------|----------------------------|----------------------------------------|------------------|--------------|--------------------------|----------|----------------------|-----------------------|-------------------|-------------|---------------------------|--------------------------|
| Low Voltage<br>distribution | 2,200                             | 3.6V                | 630            | 2.3kW    | 3kW                        | 184                                    | 2 pair 18AWG/ AL | VW-1         | 24                       | MVP800L  | 12                   | 960                   | 66%               | s.Platform  | 19u                       | 1u MCW Heat<br>Ex+1u fan |



### **Detector Heat Dissipation**

| Detector                     | Туре    | Front End LV<br>Power | HV Bias                   | LV Power Supply Type | HV Power Supply Type | Power Supply Location         | LV Power Feed | LV Feed Cables (Tray<br>Rated) | <b>Cooling</b><br>(Board Electronics) |  |
|------------------------------|---------|-----------------------|---------------------------|----------------------|----------------------|-------------------------------|---------------|--------------------------------|---------------------------------------|--|
| EE HCAL <sub>BACKWARDS</sub> | SiPM    | 200W                  | 50W@ 50V                  | MPV 4016I            | Wiener MPV 8120I     | W. Platform, 19"<br>rackmount | 10V @ 30A     | 4x 14 AWG                      | Heatsink Convection                   |  |
| EE EMCAL <sub>ENDCAP</sub>   | SiPM    | 500W                  | 500W@50V                  | MPV 4016I            | Wiener MPV 8120I     | W. Platform, 19"<br>rackmount | 10V @ 60A     | 4x 12AWG                       | Liquid                                |  |
| pf-RICH                      | HRPPD   | 310W                  | 70W@3kV                   | MPV 4018I            | CAEN A1515BV         | S. Platform, 19"<br>rackmount | 1.2V@ 330A    | 14x 12AWG                      | Liquid/ Neg. pressure                 |  |
| EE MPDG Disk                 | uRWELL  | 300W                  | 1.5W@1.5kV                | PL500                | CAEN A1515BV         | S. Platform, 19"<br>rackmount | 10V @ 40A     | 2x 10AWG                       | Liquid                                |  |
| Outer Barrel MPGD            | uRWELL  | 1.7kW                 | 1.5W@1.5kV                | PL500                | CAEN A1515BV         | S. Platform, 19"<br>rackmount | 10V @ 200A    | 12x 12AWG                      | Liquid                                |  |
| Inner Barrel MPGD            | uRWELL  | 700W                  | 1.5W@1.5kV                | PL500                | CAEN A1515BV         | S. Platform, 19"<br>rackmount | 10V@ 80A      | 15x 12AWG                      | Liquid                                |  |
| MAPS Disk                    | EIC-LAS | 3kW                   | Derived from LV<br>system | MPV 4008I            | N/Applicable         | S. Platform, 19"<br>rackmount | 3.6V@ 960A    | 48x 10AWG                      | Liquid                                |  |
| MAPS Sagitta Layer3          | EIC-LAS | 650W                  | Derived from LV<br>system | MPV 4008I            | N/A                  | S. Platform, 19"<br>rackmount | 2.4V@ 320A    | 16x 12AWG                      | Liquid                                |  |
| MAPS Sagitta Layer4          | EIC-LAS | 1.5kW                 | Derived from LV<br>system | MPV 4008I            | N/A                  | S. Platform, 19"<br>rackmount | 4.8V @ 360A   | 18x 12AWG                      | Liquid                                |  |
| MAPS Vertex                  | EIC-LAS | 100W                  | Derived from LV<br>system | MPV 4008I            | N/A                  | S. Platform, 19"<br>rackmount | 1.2V @ 100A   | 4x 12 AWG                      | Liquid                                |  |

Note: Power estimates include power conversion losses and added contingency

9/8/2023



### **Detector Heat Dissipation**

| Detector    | Туре             | Front End<br>LV Power | HV Bias                  | LV Power<br>Supply Type | HV Power<br>Supply Type  | Power Supply<br>Location      | LV Power Feed | LV Feed<br>Cables (Tray<br>Rated) | Cooling<br>(Board Electronics) |
|-------------|------------------|-----------------------|--------------------------|-------------------------|--------------------------|-------------------------------|---------------|-----------------------------------|--------------------------------|
| Barrel HCAL | SiPM             | 220W                  | 1.6W @50V                | MPV 8016I               | MPV 8120I                | S. Platform, 19"<br>rackmount | 10V @ 30A     | 8x 16AWG                          | Liquid                         |
| Barrel ECAL | SiPM<br>AstroPix | 1.6kW                 | 1W @50V &<br>100W @ 400V | MDH-07/16               | MPV 8120I &<br>EHS F005p | S. Platform, 19"<br>rackmount | 10V @ 200A    | 16x 12AWG                         | Liquid                         |
| DIRC        | HRPPD            | 330W                  | 70W@3kV                  | MPV 4018I               | CAEN<br>A1515BV          | S. Platform, 19"<br>rackmount | 1.2V@ 350A    | 16x 12AWG                         | Liquid                         |
| Barrel TOF  | AG-LGAD          | 7.2kW                 | 4W@400V                  | PL506                   | CAEN A1625               | S. Platform, 19"<br>rackmount | 10V @ 900A    | 30x 8AWG                          | Liquid                         |
| HE TOF      | AG-LGAD          | 16.0kW                | 4W@400V                  | PL506                   | CAEN A1625               | S. Platform, 19"<br>rackmount | 10V @ 2,000A  | 60x 8AWG                          | Liquid                         |
| dRICH       | SiPM             | 300W                  | 23W@70V                  | MPV 4016I               | MPV 8120I                | S. Platform, 19"<br>rackmount | 10V @ 40A     | 4x14AWG                           | Liquid                         |
| FWD ECAL    | SiPM             | 2.8kW                 | 750W@ 50V                | PL506                   | MPV 8120I                | E. Platform, 19"<br>rackmount | 10V @ 350A    | 20x 12AWG                         | Liquid                         |
| HE HCAL     | SiPM             | 1.7kW                 | 3kW@ 50V                 | PL506                   | MPV 8120I                | E. Platform, 19"<br>rackmount | 10V @ 200A    | 12x 12 AWG                        | Heatsink Convection            |

Note: Refer to <u>ePIC</u> <u>Services on-line Spreadsheet</u> for details of power distribution August 2023, T.Camarda for BNL EE Group REV-02



### **RDO Heat Dissipation**



**PCB Basic Specifications 8x Layer PCB with Power & Ground Planes** PCB Material: FR-4 TG-180 with 1oZ Copper 2.0mm thick board PCB Area: 4.0" x 4.0" FR-4 thermal conductivity 0.25 W / m-K Decoupling capacitors => multi-terminal low ESL

**Conditions:** PCB placed in still air Ambient environment 30°C This analysis is for FPGA without top-mounted heat-sink Psi-JT thermal model => component junction to PCB

•The bulk of the heat generation is from the FPGA power dissipated in the BGA package plus the 2.5W power losses from the Voltage Regulators (~70% efficiency)

•In this scenario, with 0 CFM airflow and no topmounted heat-sink attached to the device. Heat is removed from the device through the power & GND vias. Thermal stitching vias connecting the copper planes help to distribute heat. The PCB material and copper thus absorb heat generated by the devices.

•Based on the copper weight and layer + copper plane count, we can estimate an overall (power reg + FPGA) 25°C rise in the PCB with a bulk of the heat rise located in a 1.0inch<sup>2</sup> area around the heat generating component. This is illustrated by the orange and red boxes around the components.

The temperature of the PCB is then ~(26°C + 30°C = 56°C)

TARGET PCB OPERATING TEMPERATURE •To lower PCB temperature to ~35°C => (Δt/ 8W) => Cooling capacity / PCB => (21°C/8W) = 2.63 °C/W





## General Cooling Requirements

- Minimize potential damage from cooling system (inner detectors are going to be hard to service)
  - Run all detectors at about room temp or slightly higher to mitigate condensation concerns (known exceptions: dRICH).
  - Use negative pressure water circulators to mitigate leak concerns (draws air into lines) instead of leaking water out).
    - Alternatively, Novec can be used with a positive pressure system to mitigate leak concerns as it's not electrically conductive.
- Minimize the space taken by cooling services, specifically where there is too much congestion (between the EEEMCal and DIRC and between the dRICH and HCal).
- Make manifolds and cooling services disconnects as accessible and serviceable as possible.



## Cooling Circulator – Negative Pressure Water

### **CF-CDU300** Components

### 1. **Pump Chambers**

The pump chambers control the flow of fluid into and out of the CDU. The proprietary three-chamber arrangement allows the CDU to pull fluid through the loop while maintaining a steady flow.

### 2. Heat Exchangers

The heat exchangers move heat from the technology cooling system to the facility water system. The two series heat exchangers allow the CDU to move up to 300 kW of heat even on hot and humid days.

### 3. Liquid Ring Pump

Liquid ring pumps use water as a seal that never needs to be replaced. The CDU's liquid ring pump provides the vacuum used to pull the coolant through the load.

### **Microprocessor Control** 4.

The intelligent, network-enabled core of the CDU automatically manages coolant temperatures, flow rates, water quality, and more. The Cool-Flo Software allows the CDU to be easily integrated into popular DCIM and BMS systems.

### 5. Water Quality Control

The CDU automatically monitors and controls the quality of the water in the technology cooling system. The water quality system dispenses coolant additives as-needed to prevent corrosion and biological growth.

### 6. **Coolant Handling Manifolds**

Up to 4 cooling loops exit either the top or bottom of the CDU to support both raised floor and overhead configurations.



### Product Line: CF-CDU300

- available

- 36 racks or more

**Facility Specifications:** 

- recommended
- **Electrical Power:**

https://chilldyne.com/cooling-distribution-unit/



• Input Power: 208, 380/415, and 480 VAC configurations

**Cooling Capacity:** Up to 300kW with 15 °C rise.

**Approach:** Delivery at 7 °C above facility water temperature at 300 kW; 2 °C at 200 kW

Flow Rate: Up to 300 LPM at 0.5 bar differential

**System ΔPressure:** Maximum 22 inHg, minimum 10 inHg

Manifold to CDU Tubing: 1 1/4" ID, up to 30 ft, 4 circuits,

**Network Connections:** 1x Fast Ethernet, RJ45 / 8p8c

User Interfaces: Touchscreen GUI, local web-based GUI and local web API, Telnet and RS-232 command lines, SNMP and Modbus TCP/IP, Syslog (UDP), FTP file transfer.

• **Cooling Water:** 2°C to 45°C at 350 LPM (92 GPM), ASHRAE W4, 15 psi (1 bar) differential

Fill Water: 2 GPM, 20 to 100 PSI, filtered, RO

Drain Capacity: 4 GPM, 50 mm (2 in) recommended

480 VAC, 60 Hz, 3-phase WYE or Delta, 5 Amps
208 VAC, 60 Hz, 3-phase WYE, 10 Amps
380/415 VAC, 50/60 Hz, 3-phase WYE, 7 Amps

### **Cooling Calculation**

Heat Transfer Equation Pressure-loss Equation Pressure-loss Equation, Bend

 $\dot{Q} = \dot{m}c_p \Delta T$ Q – Heat Flow  $\dot{m}$  – Mass Flow  $c_p$  – Specific Heat  $\Delta T$  – Temp Change

 $\Delta p = L f_D \frac{\rho}{2} \frac{v^2}{D} \qquad \Delta p = f_D v^2 \frac{\rho}{2} \frac{R_b}{D} \frac{\pi \theta}{180} + k_b v^2 \frac{\rho}{2} \qquad Re = \frac{\rho v D}{\mu}$  $\Delta p$  – Pressure Loss  $\Delta p$  – Pressure Loss  $f_D$  – Friction Factor L-Tube Length  $\rho$  – Fluid Density  $f_D$  – Friction Factor v – Fluid Velocity  $\rho$  – Fluid Density  $R_b$ – Bend Radius v – Fluid Velocity *D* – Tube Diameter *D* – Tube Diameter  $\theta$  – Bend Angle  $k_{b}$  – Bend Coefficient

Friction Factor Equation – Churchill-Bernstein Approximation (non-implicit)

$$f_D = 8\left(\left(\frac{8}{Re}\right)^{12} + \frac{1}{(A+B)^{3/2}}\right)^{1/12} A = \left(2.457\ln\left(\frac{1}{\left(\frac{7}{Re}\right)^{9/10} + 0.27\frac{\epsilon}{D}}\right)\right)^{16} B$$



### **Reynolds Number Equation** *Re* – Reynolds Number $\rho$ – Fluid Density v – Fluid Velocity *D* – Tube Diameter $\mu$ – Dynamic Viscosity



## Cooling Calculation Results – Detectors

|                    |            |       | Ter | np  | Pressure |        |       |           |                   |      |        | Area    | Area    |
|--------------------|------------|-------|-----|-----|----------|--------|-------|-----------|-------------------|------|--------|---------|---------|
| Detector           | Total Heat | QTY   | Cha | nge | Drop     | Length | Bends | Flow Rate | <b>Total Flow</b> | OD   | Area   | Packing | Safety  |
| Units              | W          | 12.00 |     |     | psi      | m      | 4.00  | L/min     | L/min             | in   | cm2    | cm2     | cm2     |
| MAPS Vertex        | 100        | 12    |     | 2   | 0.25     | 6      | 4     | 0.12      | 1.43              | 0.25 | 3.80   | 6.48    | 7.96    |
| MAPS Sagita Layer3 | 700        | 120   |     | 2   | 0.25     | 6      | 4     | 0.08      | 10.00             | 0.25 | 38.00  | 64.83   | 79.58   |
| MAPS Sagita Layer4 | 1400       | 236   |     | 2   | 0.25     | 6      | 4     | 0.08      | 20.00             | 0.25 | 74.74  | 127.49  | 156.52  |
| MAPS Disk          | 3000       | 550   |     | 2   | 0.25     | 6      | 4     | 0.08      | 42.86             | 0.25 | 174.18 | 297.12  | 364.76  |
| Inner Barrel MPGD  | 700        | 33    |     | 2   | 0.25     | 6      | 4     | 0.30      | 10.00             | 0.31 | 16.33  | 26.36   | 32.54   |
| Barrel TOF         | 7200       | 144   |     | 2   | 0.25     | 6      | 4     | 0.71      | 102.86            | 0.38 | 102.61 | 159.52  | 197.65  |
| HE TOF             | 16000      | 8     |     | 2   | 0.25     | 6      | 4     | 28.57     | 228.57            | 1.50 | 91.21  | 122.30  | 153.91  |
| Outer Barrel MPGD  | 1700       | 40    |     | 2   | 0.25     | 6      | 4     | 0.61      | 24.29             | 0.38 | 28.50  | 44.31   | 54.90   |
| MPDG Disk          | 300        | 16    |     | 2   | 0.25     | 6      | 4     | 0.27      | 4.29              | 0.31 | 7.92   | 12.78   | 15.78   |
| pfRICH             | 350        | 9     |     | 2   | 0.25     | 6      | 4     | 0.56      | 5.00              | 0.38 | 6.41   | 9.97    | 12.35   |
| EEEMCAL            | 500        | 30    |     | 2   | 0.25     | 6      | 4     | 0.24      | 7.14              | 0.31 | 14.84  | 23.96   | 29.58   |
| DIRC               | 350        | 12    |     | 2   | 0.25     | 6      | 4     | 0.42      | 5.00              | 0.31 | 5.94   | 9.59    | 11.83   |
| dRICH              | 6000       | 24    |     | 2   | 0.25     | 6      | 4     | 3.57      | 85.71             | 0.63 | 47.50  | 68.34   | 85.36   |
| EEHCAL             | 200        | 36    |     | 2   | 0.25     | 6      | 4     | 0.08      | 2.86              | 0.25 | 11.40  | 19.45   | 23.88   |
| Barrel ECAL        | 1600       | 96    |     | 2   | 0.25     | 6      | 4     | 0.24      | 22.86             | 0.31 | 47.50  | 76.68   | 94.65   |
| Barrel HCAL        | 200        | 12    |     | 2   | 0.25     | 6      | 4     | 0.24      | 2.86              | 0.31 | 5.94   | 9.59    | 11.83   |
| HE ECAL            | 2800       | 36    |     | 2   | 0.25     | 6      | 4     | 1.11      | 40.00             | 0.44 | 34.92  | 52.82   | 65.63   |
| HE HCAL            | 1700       | 12    |     | 2   | 0.25     | 6      | 4     | 2.02      | 24.29             | 0.50 | 15.20  | 22.52   | 28.04   |
|                    |            |       |     |     |          |        |       |           |                   |      |        |         |         |
| Total              | 44800      | 1426  |     |     |          |        |       |           | 640.00            |      | 726.95 | 1154.12 | 1426.76 |



## Cooling Calculation Results – RDOs

| Datastas          | <b>-</b>   |       | Temp   | Pressure |        |       |           | <b></b>    |      |        | Area    | Area   |
|-------------------|------------|-------|--------|----------|--------|-------|-----------|------------|------|--------|---------|--------|
| Detector          | Iotal Heat | QIY   | Change | Drop     | Length | Bends | Flow Rate | Iotal Flow | OD   | Area   | Packing | Safety |
| Units             | W          | 12.00 | C      | psi      | m      | 4.00  | L/min     | L/min      | in   | cm2    | cm2     | cm2    |
| Inner Barrel MPGD | 960        | 12    | 2      | 0.10     | 6      | 4     | 1.14      | 13.71      | 0.50 | 15.20  | 22.52   | 28.04  |
| Barrel TOF        | 2144       | 24    | 2      | 0.10     | 6      | 4     | 1.28      | 30.63      | 0.50 | 30.40  | 45.05   | 56.09  |
| HE TOF            | 1072       | 24    | 2      | 0.10     | 6      | 4     | 0.64      | 15.31      | 0.44 | 23.28  | 35.21   | 43.75  |
| Outer Barrel MPGD | 2304       | 48    | 2      | 0.10     | 6      | 4     | 0.69      | 32.91      | 0.44 | 46.55  | 70.42   | 87.50  |
| MPDG Disk         | 256        | 12    | 2      | 0.10     | 6      | 4     | 0.30      | 3.66       | 0.38 | 8.55   | 13.29   | 16.47  |
| pfRICH            | 136        | 6     | 2      | 0.10     | 6      | 4     | 0.32      | 1.94       | 0.38 | 4.28   | 6.65    | 8.24   |
| EEEMCAL           | 96         | 3     | 2      | 0.10     | 6      | 4     | 0.46      | 1.37       | 0.44 | 2.91   | 4.40    | 5.47   |
| DIRC              | 192        | 6     | 2      | 0.10     | 6      | 4     | 0.46      | 2.74       | 0.44 | 5.82   | 8.80    | 10.94  |
| dRICH             | 9920       | 48    | 2      | 0.10     | 6      | 4     | 2.95      | 141.71     | 0.75 | 136.81 | 192.96  | 241.52 |
| EEHCAL            | 144        | 6     | 2      | 0.10     | 6      | 4     | 0.34      | 2.06       | 0.38 | 4.28   | 6.65    | 8.24   |
| Barrel ECAL       | 2096       | 48    | 2      | 0.10     | 6      | 4     | 0.62      | 29.94      | 0.44 | 46.55  | 70.42   | 87.50  |
| Barrel HCAL       | 72         | 3     | 2      | 0.10     | 6      | 4     | 0.34      | 1.03       | 0.38 | 2.14   | 3.32    | 4.12   |
| HE ECAL           | 512        | 24    | 2      | 0.10     | 6      | 4     | 0.30      | 7.31       | 0.38 | 17.10  | 26.59   | 32.94  |
| HE HCAL           | 664        | 12    | 2      | 0.10     | 6      | 4     | 0.79      | 9.49       | 0.44 | 11.64  | 17.61   | 21.88  |
| All RDOs          | 20568      | 24    | 2      | 0.10     | 6      | 4     | 12.24     | 293.83     | 1.25 | 190.02 | 257.42  | 323.58 |
|                   |            |       |        |          |        |       |           |            |      |        |         |        |
| Total             | 20568      | 276   |        |          |        |       |           | 293.83     |      | 355.51 | 523.89  | 652.68 |



### Detector Requirements

- Heat Dissipation Total heat dissipated by the detector.
- Heat Stability Changes in heat dissipation over time.
- Temperature Desired operating temperature.
- Tolerance Allowable deviation from the desired temperature.
- Gradient Allowable difference in temperature across the detector.
- Stability Allowable deviation from the desired temperature over time.
- Segmentation The number of detector components there are that require cooling, we can determine the number of parallel or series lines, manifolding, etc.
- Additional Requests?



### ector. over time. e that require es, manifolding,

## Summary / Next Steps

- Power dissipation estimate calculated
- Corresponding tube and flow rate estimate calculated
- Refine power and cooling calculations
- Confirm power numbers are reasonable with detector groups.
- Work on determining more reasonable RDO quantities.
- Determine appropriate RDO locations and cooling scheme.
- Decide manifolding sizes and locations.
  - Sensors, interlocks, controls, etc.
- Work with detector groups to determine temperatures, tube sizes, flow rates.
- Consider cooling interface details.



# Questions?



13