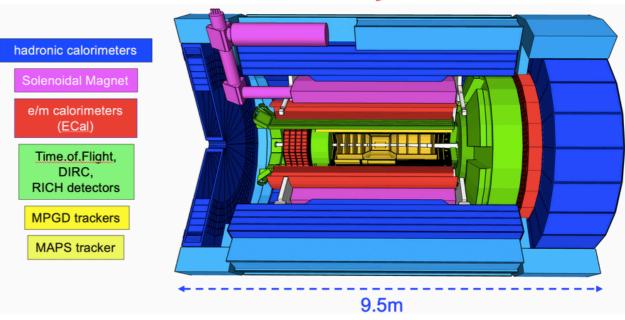


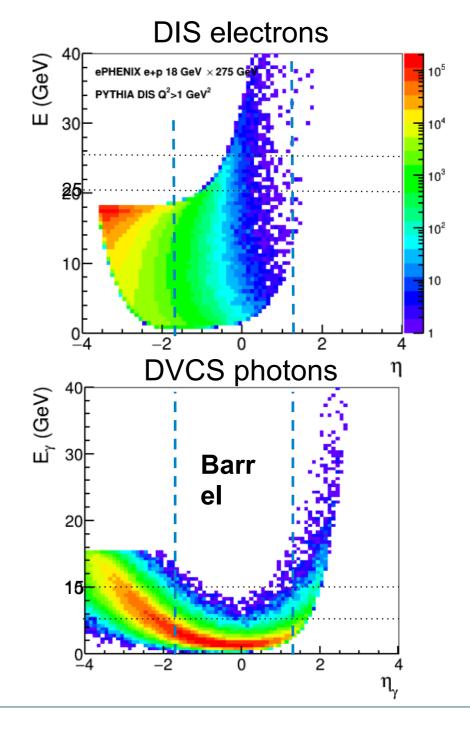
SciFi Review for ePIC/bECAL Pre-Brief Slides

Z. Papandreou, M. Żurek, S. Joosten for Imaging Barrel ECal DSC September 13, 2023



Overview

- bECAL Consortium
- bECAL Performance
- SciFi technology
- SciFi Assessment
- GlueX BCAL QA/QC
- Bottom Line



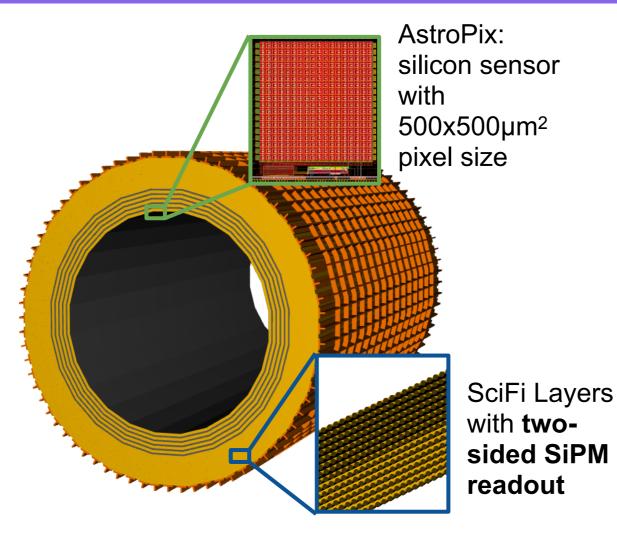
EIC Calorimetry Requirements

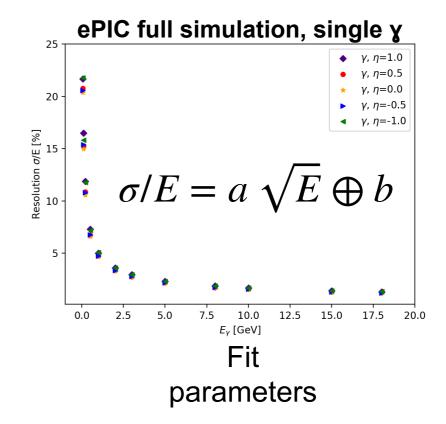
EIC Yellow Report requirements for bECAL:

- Detection of electrons/photons to measure energy and position
- Require moderate energy resolution $10\%/\sqrt{E} \oplus (2-3)\%$
- Require electron-pion separation up to 10⁴ at low momenta in combination with other detectors
- Discriminate between π⁰ decays and single γ up to ~10 GeV
- Low energy photon reconstruction ~100
 MeV

Challenges: e/π PID, γ/π^0 discrimination, space

bECAL Consortium





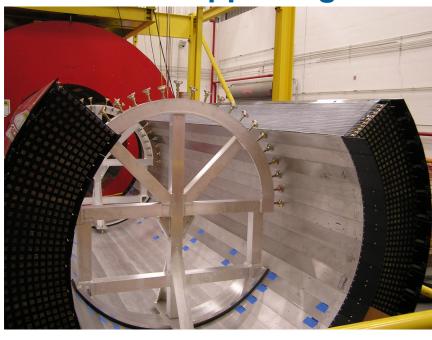
bECAL Performance

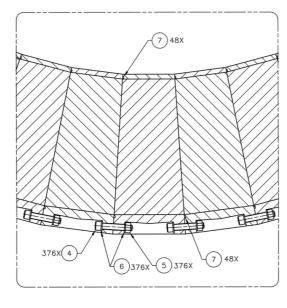
Covers -1.71 < η < 1.31

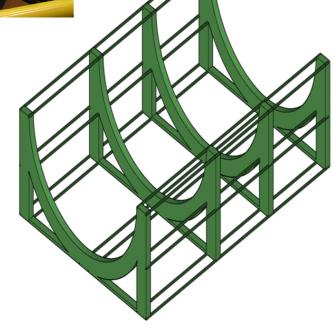
- Total radiation thickness at $\eta=0 \sim 17.1 X_0$
- Sampling fraction ($\Sigma E_{\text{fibers}} / E_{\text{thrown}}$) ~10.3%

η	a/√(E) [%]	b [%]		
0	4.75(0.01)	1.02(0.02)		

Energy resolution - Primarily from Pb/SciFi layers (+ Imaging pixels energy information) Position resolution - Primarily from Imaging Layers (+ 2-side Pb/SciFi readout)






EM Barrel: ePIC v GlueX

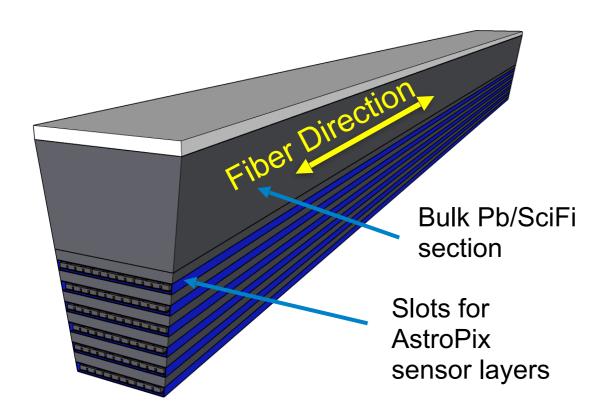
GlueX self-supporting Arch

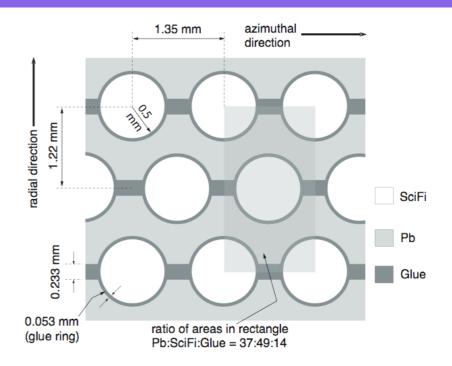
GlueX Stave Interconnections

		ePIC	GlueX
Diameter (m)			
	Inner	1.62	1.3
	Outer	2.6	1.8
Length (m)		4.35	3.90
# Staves		48	48
Mass/stave (T)		1.1	0.58
Weight		36 tons	23 tons

ePIC/bECAL & GlueX/BCAL

- Pb/SciFi construction
- 4,500 km vs 3,300km
- Hybrid vs Monolithic

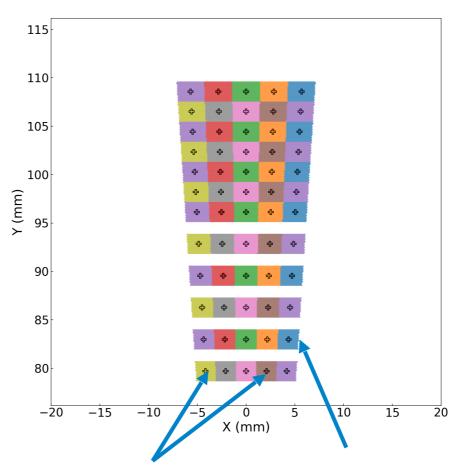



bECAL Sector

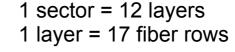
Calorimeter Sector

• 48 sectors:

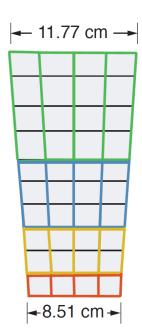
- Inner: interleaved layers of imaging Si sensors with PbSciFi (SFIL- SciFi Imaging Layers)
- Outer: bulk Pb/SciFi section
- Light guides; optical cookie
- SiPMs as sensors



SiPM Readout


- 2-sided SiPM readout
- Lightguides on sector sides
 - o inner surface ~2×2 cm²
 - output face 1.3×1.3 cm²
- SiPMs that meet our requirements:
 - 4 x 6×6 mm² SiPMs (or equivalent) with 50 µm pixels (e.g. 4 x S14160-6050, or a pre-assembled S14161-3050-04 array)
 - same dimensions as GlueX but with better performance:
 - PDE = 50% (GlueX 33%)
 - Lower noise
- 12 layers x 5 cells x 2 sides x 48 sectors = **5760 channels**

ePIC Sector End View (x-y plane view), 17.1 X0



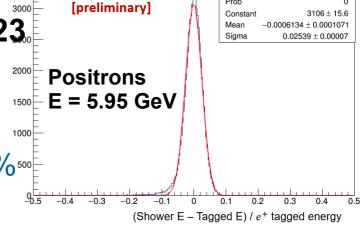
Readout **Cell**The area 1 light
guide is attached to
Layer = 5 cells

Pb/SciFi Layer

GlueX Sector End View, 15.5 X0

Hamamatsu S12045(X) 4×4 array of 3×3 mm² 50×50µm² pixels

16 FADC per side 12 TDC per side



SciFi Technology

- Mature Technology: GlueX, KLOE EMCals
- Tested extensively for electromagnetic response in energies E_v < 2.5 GeV
- Energy resolution: $\sigma = 5.2\% / \sqrt{E} \oplus 3.6\%$
 - Newresults from Baby BCAL prototype in Hall D extend coverage to 6 GeV and show that constant term is < 2%

Hall D, March 2023.
Baby BCAL Test

Measured mass Resolution: ~ 2.5% 500

GlueX BCAL parameters

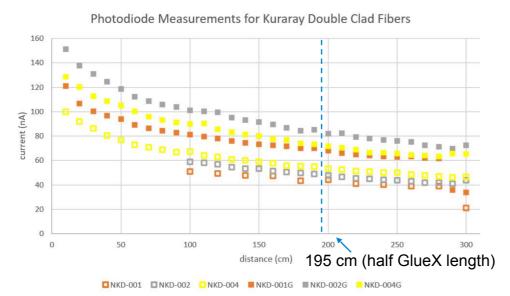
SiPMs: S12045(X) 4×4 array of 3×3 mm², 50µm pixel https://ieeexplore.ieee.org/document/7161418, https://www.sciencedirect.com/science/article/pii/S0168900213009042, https://www.sciencedirect.com/science/article/pii/S0168900213017233

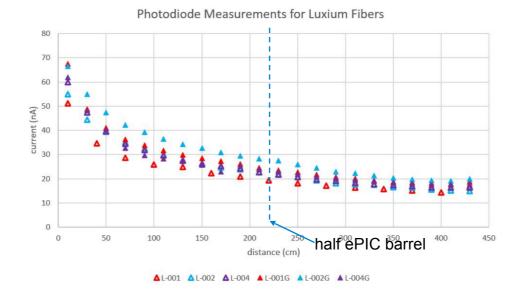
Lightguides: 8 cm long attached to the sector sides https://halldweb.jlab.org/doc-public/DocDB/ShowDocument?docid=1784

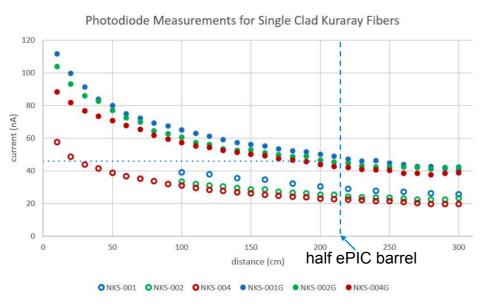
Fibers: double-clad SCSF-78MJ

Baby BCAL 60 cm long, 15.5 X0, tested with e+, E ~ 3.6-6 GeV

1) GlueX, Nucl. Instrum. Meth. A, vol. 896, pp. 24-42, 2018






Attenuation Length

Summer 2023 Measurements @Regina

Kuraray double-clad/Kuraray single-clad with grease

• at 10 cm: ~ 1.40

at 200 cm: ~ 1.65

Kuraray double-clad/Luxium single-clad with grease

• at 10 cm: ~ 2.01

at 200 cm: ~ 2.80

Kuraray single-clad 0cm - 216 cm: ~2-2.4 Luxium single-clad 0cm - 216 cm: ~2.7

Source: <u>bECAL Fiber Tests @Regina - Update 5</u>

BCAL Construction Traveller version 1.0

Module No. 24 Nonconformities: Build & Machining Fibres

Base Plate

Stamp/Segment No. 38 <u>Drawing</u> <u>RMS Traveller</u>

Matrix Build

Date Start	10/26/2010	Fibre Shipment	12 & 13	Epoxy Used (g) 1	14495.2
Date End	11/18/2010	Fibre Lots (JS-)	322-325, 326-	Epoxy Lost (g)	484.5
No. of Layers	183		331, 333, 335-	Pb Sheets Lost	2
			336, 338, 343-		
No. of Builds	16		346, 350-354		

16 346, 350-354 21-22 C Temp Range AttenLen Means 393-399 **Build Stats Humid Range** 21-29% 6.73-7.46 **Epoxy Stats** Npe Means Fibres Used 15277 **Procedures** Fibres Lost 0 **Photos**

Top Plate

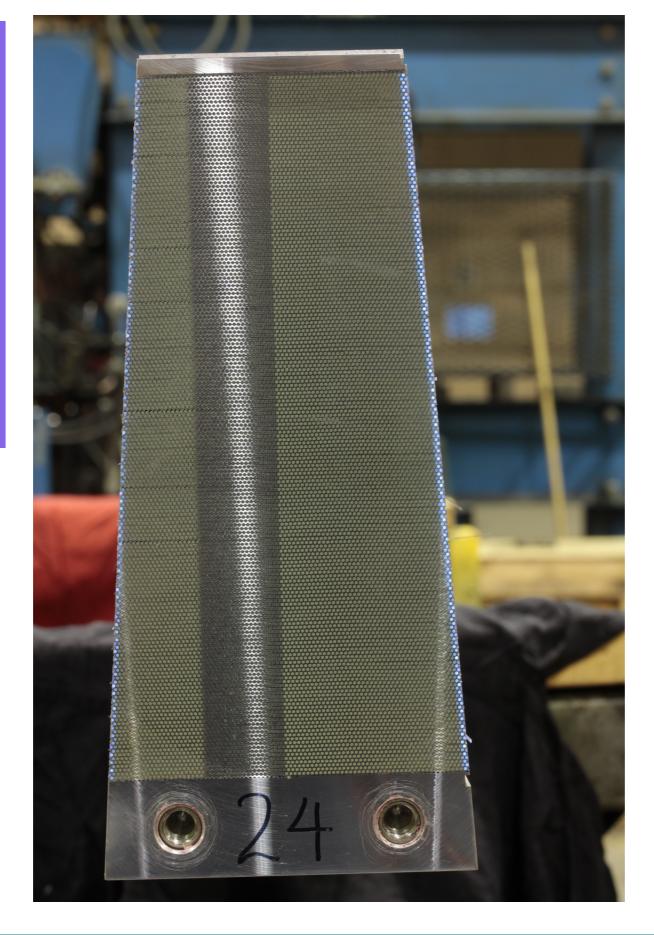
Stamp No. 24 <u>Drawing</u> DC Rails: No

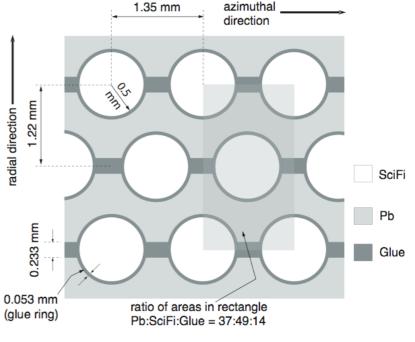
Machined Module

Module/Segment No. 24 <u>Drawing</u> <u>RMS Traveller</u>

Transmission Uniformity

Light Source: UV-LED Coupling: Air gap
Coupler: Winston Cone Readout: Winston Cone End 1 Image

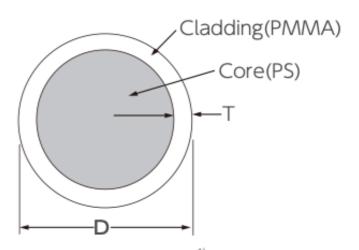

Last Updated: 1/20/2011 14:57



QA & QC QC GlueX

ES&H

- Scintillating fibers (polystyrene) are flammable.
- The total mass of fibers for bECAL is 3.5 tons.
- Fibers will be received, stored and processed into PbSciFi matrices at ANL/Canada (U Manitoba).
- Full assembly of each sector at ANL. Integration of all sectors at BNL.
- Adequate safety measures are needed to store this mass of fibers. Handling and storage areas require with standard fire extinguishing systems.



Fiber Specs

bECAL detector

- 1. Double or Single clad fibers, round cross section
- 2. diameter 1.0 mm
- 3. diameter tolerance shall be less than 2%, <20 µm
- 4. Single clad: cladding thickness ~2% of diameter, Double-clad: cladding thickness ~4% of diameter
- 5. attenuation length for blue light >3.5 m
- 6. emission spectrum of blue-green light
- 7. light yield > 7000-8000 ph/MeV
- 8. scintillation decay time < 3ns
- 9. delivered in spools or canes
- 10. total length 4500 km.
- 11. delivery schedule: ~3 years

Single Cladding

Cladding Thickness": T=2% of D Numerical Aperture: NA=0.55 Trapping Efficiency: 3.1%

Communicated to Kuraray & Luxium (May 2023); both indicated delivery in ~ 4 yrs (with fECAL 3,000km SciFi)

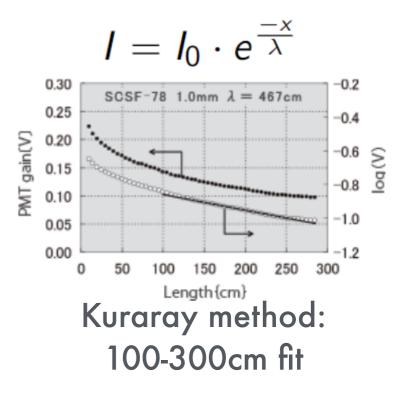
Comparison to GlueX

Fiber specs:

- single-clad, 435-cm long, shipped in coils
- performance and cost (value engineering: higher PDE, optical coupling for double- vs single-clad)
- otherwise same specs as GlueX
- PbSciFi construction:
 - Bulk section: identical
 - Layer 2-cm-slices: similar; minimal risk
- Production & assembly: two lines at ANL, one in Canada, sector assembly at ANL, barrel at BNL

Bottom Line

- bECAL baseline comparison is to GlueX/BCAL
- GlueX/BCAL
 - PbSciFi Construction successful
 - SciFi: Kuraray double-clad met GlueX specs
- ePIC/bECAL
 - Longer (432.5 cm vs 390 cm), fibers may come in a spool elastic memory, tooling and procedure needed
 - Vendors: single-clad Kuraray (\$1.4/m) and Luxium (\$1.1/m) should be adequate. Kuraray has better performance to Luxium.
 - Both vendors appear to be able to meet LLP timeline.



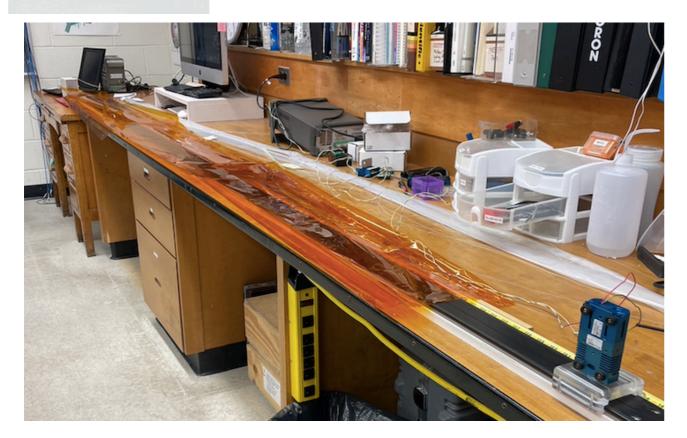
Backups

Natten Measurements

Kur-S Lux-S Kur-D

NKS-00i	λ (cm)	L-00i	λ (cm)	NKD-00i	λ (cm)
001	431±17	001	412±17	001	620±41
002	480±22	002	386±13	002	528±24
003	486±16	003	377±8	003	505±21
004	441±46	004	406±8	004	544±17
005	460±13	005	439±8		
001G	432±27	001G	425±8	001G	641±67
002G	532±42	002G	407±9	002G	529±41
004G	449±17	004G	567±66	004G	531±29

All attenuation lengths > 400 cm


Fiber Measurements

Photodiode Station

Si photodiodes

S2281 series

Si photodiodes with BNC connector

Npe Station (soon)

90Sr source SiPM-PMT coinc

BCAL Testing & Construction

- Detailed step-by-step manuals on construction and fiber testing (1% of fibers, randomly selected)
- Eight different check lists
- Detailed spread sheets for tracking fibers, lead, epoxy, builds & module height
- Inspections & QA: in reports
- Condition/packaging/visual inspection/photos
- Diameter at 3 locations along each fiber
- Wavelength spectrum measured
- Attenuation length and light output measured

BCAL Module Construction Procedures

GlueX Team, Regina

BCAL Module Construction Procedures

J. Chan and D. Kolybaba

WRITTEN: June 22, 2010 → Version 1 (PRODUCTION MODULES)

Proper safety procedures, clothing, equipment, and materials must be used during the entire construction and all measuring equipment must be properly calibrated before use.

Preparing Base Plate

- Clean the bottom of base plate with a water soluble degreaser followed by ethanol.
- 2. Check that the inserts (two sets of four) have been properly installed. Position is checked at Ross Machine Shop using the gauges that the UofR has provided.
- 3. Using a calibrated tape measure check the <u>position</u> of the bolt hole pockets, and report only out of specification measurements on the traveller for that specific base plate.
- Measure the width of each bolt hole pocket with calibrated digital callipers at the top of the draft, and report only out of specification measurements on the traveller for that specific base plate.

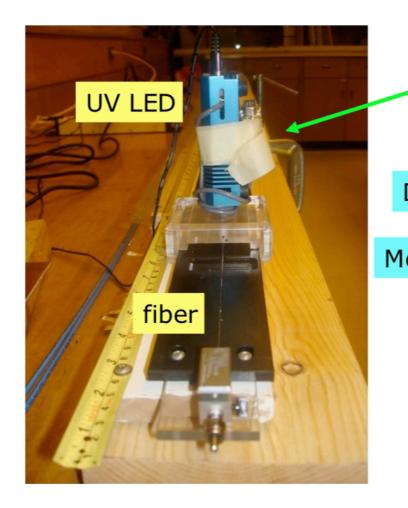
BCAL Construction - Status Quo

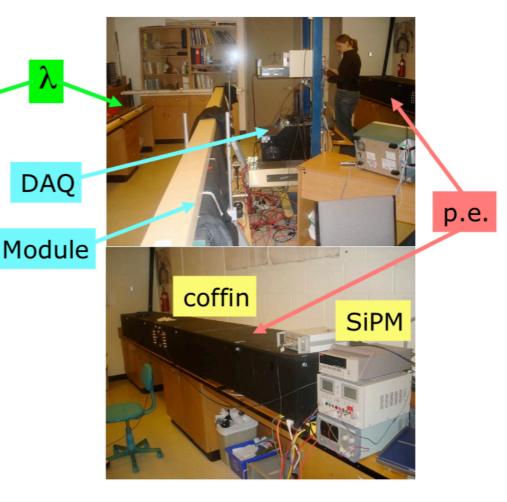
GlueX Team, Regina

CONSTRUCTION STATUS QUO

George J. Lolos and Zisis Papandreou

WRITTEN: June 3, 2009 \rightarrow Version 1 UPDATED: November 26, 2009 \rightarrow Version 1 (minor corrections to text) UPDATED: June 11, 2009 \rightarrow Version 2 (major update to current status)

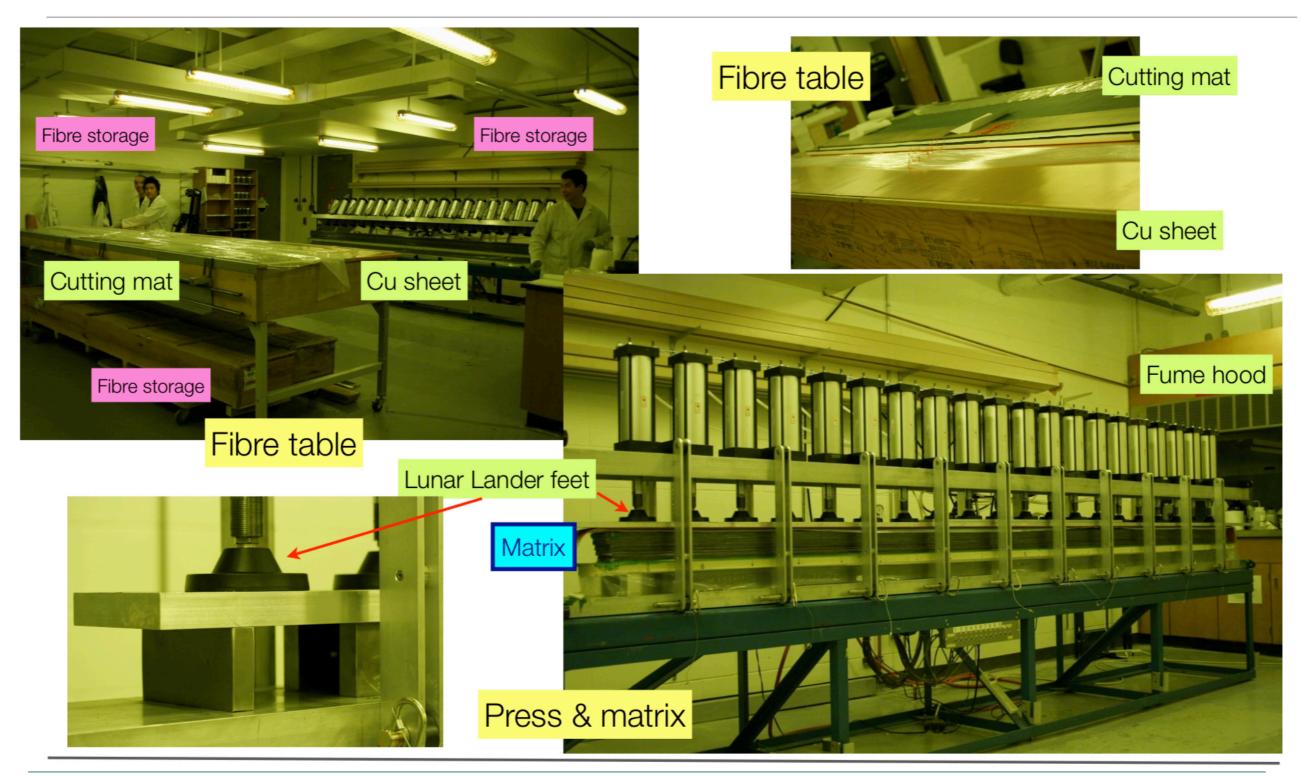

1. Introduction


The construction status quo of the 48 BCAL modules, as budgeted for in subcontract JSA 09-R280857-CR (for the construction of the Barrel Calorimeter – BCAL) and in __Appendices 1 and 2, is described herein.

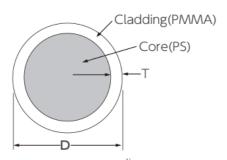
Z. Papandreou, ePIC/SciFi Review

Fibre Testing lab

- First article
 - Regina data
 - JLab data
 - GlueX-doc-1317
 - Bench Reference
- Production (Regina)
 - Condition/packaging
 - **O**lameter
 - Attenuation length: LED, photodiode current
 - ☑N_{pe} at 200cm: ⁹⁰Sr, PMT, external trigger



Matrix construction progress - panoramic



ePIC Fiber Contenders

Single Cladding

Cladding Thickness¹⁾: T=2% of D Numerical Aperture: NA=0.55 Trapping Efficiency: 3.1%

		Emission		Decay Time	Att.Leng.2)	Characteristics
Description	Color	Spectra	Peak[nm]	Decay Time [ns]	[m]	
SCSF-78	blue	Soo tho	450	2.8	>4.0	Long Att. Length and High Light Yield
SCSF-81	blue	following	437	2.4	>3.5	Long Attenuation Length
SCSF-3HF(1500)	green	figure	530	7	>4.5	3HF formulation for Radiation Hardness

- 1) Test fibers are Non-S type, $1 \text{ mm } \phi$.
- Measured by using bialkali PMT and UV light(254nm).
 Quality control is made by another measurement of the transmission loss every batch.

Specific Properties of Standard Formulations

Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	# of Photons per MeV**	Characteristics / Applications
BCF-10	blue	432	2.7	~8000	General purpose; optimized for diameters >250µm
BCF-12	blue	435	3.2	~8000	Improved transmission for use in long lengths

