

BF2023: Brookhaven Forum 2023: Advancing Searches for New Physics

Recent BSM results from ATLAS and CMS

Haifa Rejeb Sfar

On behalf of the ATLAS and CMS

Collaborations

04 - 10 - 2023

1

To put things in context ...

Several SM limitations and possible solutions

Problem 1: The mass of the Higgs boson is significantly lighter than expected when compared to the Planck Scale, creating a hierarchy problem.

Solution 1: SuperSymmetry (Susy) and Very Heavy Quarks (VLQs), i.e., particles, cancel out quantum loop corrections \rightarrow Stability of the Higgs boson mass.

Problem 2: Dark Matter: the rotation velocity of the outer layers of the galaxies does not match the observed Baryonic matter. Not only...

Solution 2: Susy, i.e., neutralinos as dark matter candidate

and Dark Sector

To put things in context ...

Several SM limitations and possible solutions

Problem 3: Origin of Neutrino mass: SM neutrinos are LH, believed to be massless until the discovery of neutrino's oscillation.

Solution 3: Extension of the SM by RH neutrinos simple SM extension uses type-I seesaw mechanism i.e. Heavy Neutral Leptons (HNLs) or Left-Right Symmetric Models (LRSM) to incorporate mass to neutrinos.

Problem 4: Baryon assymetry in the universe, matter is much more abondant than anti matter.

Solution 4: HNLs, Axion like particles (ALPs), etc ...

Overview: recent results

Analysis	Topology	Experiment
ATLAS-CONF-2023-058	Stop pair production in MSSM	ATLAS
CMS-PAS-EXO-21-008	LLPs decay in the muon system	CMS
<u>CMS-PAS-SUS-21-006</u>	Charged LLPs susy with disappearing tracks	CMS
<u>CMS-PAS-EXO-22-020</u>	LLPs within split susy	CMS
ATLAS-CONF-2023-046	Ewk susy combination	ATLAS
CMS-PAS-SUS-21-008	Ewk susy combination	CMS
EXO-23-014	Run 3 LLPs results	CMS
ATLAS-CONF-2023-070	Search for double VLQ pair production	ATLAS
ATLAS-CONF-2023-047	Search for dark jets	ATLAS
EXOT-2019-39	Search for $_{W_R}$ bosons and heavy neutrino	ATLAS
EXO-21-013	Search for LL HNLs in 2 leptons + jets	CMS
<u>CMS-PAS-EXO-22-017</u>	Search for LL HNLs in the muon system	CMS
2307.14944	Tetrajets generic resonance	ATLAS
2308.04835	Search for monopoles	ATLAS
ATLAS-CONF-2023-040	Search for short and longlived ALPs	ATLAS

CMS and ATLAS results with full Run 2 dataset corresponding to ~138 fb^{-1} and 140 fb^{-1} respectively.

One CMS result using the Run 3 dataset corresponding to 36.7 $\rm fb^{-1}$

All results can be found:

ATLAS: Exotics Physics Searches
<u>Publications</u>

CMS: Beyond 2nd Generation :
<u>Preliminary</u>, <u>Publications</u>,
<u>Exotica</u>: <u>Preliminary</u>, <u>Publications</u>

stop pair production search

Higgs decays to neutral LLPs in the muon system

Charged LLPs with disappearing tracks

Different final states based on:

Number of jets, b-jets, leptons, and disappearing tracks.

 $m_{\widetilde{\chi}_1^0}$ (GeV)

CMS-PAS-SUS-21-006

LLPs with displaced vertex and missing energy

CMS-PAS-EXO-22-020

Susy: EWK combination results

	Combined EWK SUSY CMS analyses. Considered processes				$\tilde{\chi}_2^0$
Production mode	$\begin{vmatrix} & \text{Wino} \\ & \tilde{\chi}_1^+ \tilde{\chi}_1^- \end{vmatrix}$	$\begin{array}{c} \text{Wino} \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \end{array}$	$\begin{vmatrix} \text{Wino} \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \end{vmatrix}$	Higgsino GGM $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^\pm \tilde{\chi}_{1,2}^0, \tilde{\chi}_1^0 \tilde{\chi}_2^0$	$\tilde{\chi}_{1}^{\pm} \qquad \qquad$
Decay mode	$\left \begin{array}{c} \tilde{\chi}_{1}^{\pm} \rightarrow W^{\pm} \tilde{\chi}_{1}^{0} \\ \end{array} \right $	$\begin{vmatrix} \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0 \end{vmatrix}$	$\begin{vmatrix} \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \to h \tilde{\chi}_1^0 \end{vmatrix}$	$ ilde{\chi}^0_1 o Z/h ilde{G}$	+ $\tilde{\chi}_3^{\circ}$ Production and decay included

Displaced dimuon

Run³

10⁵ 10 Cτ [cm]

Search for VLQs pair production

No excess beyond the expected background

A bump hunter in the dijet mass spectrum

Dark hadrons decay promptly to SM particles

- -> Visible large-radius jets + high track multiplicity
- -> Complimentary search to semi-visible

Search for right-handed W_R bosons and heavy neutrino N_ℓ

Long-lived HNLs in the muon system

- Dirac and Majorana HNLs with inclusive coupling to the 3lepton generations.
- Inclusive HNL decay search
- Low mass region \rightarrow displaced decays
- HNL decay in the muon system (MS)
- 1 prompt lepton + hit clusters in the MS
- Event categorised based on lepton flavor and the muon subsystem

Relative coupling to the 3 lepton generation

Long-lived HNLs in 2 ℓ + jet final state

- Dirac and Majorana HNLs /Incl. coupling to the 3 generation
- Prompt $\boldsymbol{\ell}_1$ + displaced $\boldsymbol{\ell}_2$ and $\boldsymbol{j^\star}$
- ℓ_2, j^\star topology : boosted or resolved
- $\ell_1 \ell_2$ flavour(charge) combination i.e SF/OF(OS/SS)
- The 2D displacement sign. from PV:
- $d_{xy}^{sig}(\ell_2) = d_{xy}(\ell_2)/d_{xy}^{err}(\ell_2)$
- A displaced jet tagger to maximize sensitivity to a broad $c \tau_0$.

Broad categorisation (48 category):

#yields SR:resolved

Relative coupling to the 3 lepton generationMax excl. $c \tau_0$ for fixed m_N Max excl. m_N for fixed $c \tau_0$

Search for monopoles

Tetrajets generic resonance

 3.6σ excess Search for a new resonance in $< m_{4j} >$ and $< m_{2j} >$ inv. mass 138 fb⁻¹ (13 TeV) Average dijet mass [TeV] 2.5 Events/bi A massive resonance Y decaying to intermediate resonances X 10[°] CMS JHEP07(2023)16 10⁴ 10^{3} 1.5 Х 10^{2} Υ 10 0.5 $< m_{2i} >$ 9 2 3 5 6 8 10 $< m_{4i} >$ Four-jet mass [TeV] .Jet 3000 [0eV] 2500 [qd] *H*8 10⁻ **ATLAS** √s=13 TeV, 140 fb⁻¹ Observed: Events ATLAS 10⁶ ATLAS Data No excess $- Y \rightarrow XX \rightarrow jjjj$ √s=13 TeV, 140 fb⁻¹ 4-par fit, <u>√s = 13 TeV, 14</u>0 fb⁻¹ Х observed 0.26 < α < 0.28 χ^2 / ndof = 0.85 Ψ Expected: $.26 < \alpha < 0.28$ × 95% CL upper limits 10⁴ 10^{3} ₹ 10⁻² $\cdots Y \rightarrow XX \rightarrow jjj$ × 10³ 2000 $\pm 1\sigma$ $\pm 2\sigma$ ь 10² 10 1500 10² 10 10 1000 Residuals (σ) 10 10 2000 9000 10000 3000 4000 5000 6000 7000 8000 500 M_v [GeV] 2000 2500 3000 3500 4000 4500 5000 5500 6000 m₄i [GeV] 2307.14944 2000 3000 4000 5000 6000 7000 8000 9000 m_{4i} [GeV]

Search for ALPs

Search for a pseudo scalar denoted a

short and longlived depends on $C_{a\gamma\gamma}$, for prompt a $\rightarrow C_{a\gamma\gamma} > 0.1$

In $H \rightarrow aa \rightarrow 4\gamma$

Five main categories based on photons candidates reco: 45, 35, 25, 2M and 151M

- Recent results from ATLAS and CMS using Run 2 Dataset and Run3 as well!
- Several techniques used to maximise sensitivities.
- No evidence of new physics is observed **YET** !
- Many phase spaces (not yet excluded) have to be explored \rightarrow We need more data !
- Run 3 has started with ~ 67 fb^{-1} for ATLAS and CMS of collected data

The best is yet to come!