Recent SM results (including Higgs) from ATLAS and CMS

Focusing on rare processes

Nedaa-Alexandra Asbah (CERN)

Brookhaven Forum 2023 03.10.2023

CERN

2

- Rare production modes become fully accessible with Run 2 data
 - Many recent first observations!
- No signs of new physics beyond the SM brought by searches at LHC
- Further test SM by measuring more precisely rare processes which are not yet well measured

Triboson measurements with ATLAS and CMS

- Triboson final states have small cross section
- Sensitive to Anomalous Quartic Gauge Coupling (AQGC)
- Limit to Effective Field Theories can be set
- Understand those process as they are backgrounds for further analyses in run 3 (ZH(γγ) WH(γγ))

*WW*γ [CMS PAS SMP-22-006]

- First measurement of WWγ fiducial cross section with 5.6 (4.7) standard deviation observed (expected)
 - $\sigma_{\text{measured}} = 6.0 \pm 1.0 \text{ (stat)} \pm 1.0 \text{ (syst)} \pm 0.9 \text{ (theo) fb}$ within 1.5σ of theory prediction
 - $\sigma_{\text{Theory}} = 4.16 \pm 0.34 \text{ (scale)} \pm 0.05 \text{ (PDF) fb}$
- Using opposite charge opposite flavor e/µ channel with 138 fb⁻¹ at 13 TeV
 - b-jet veto

CERN

- Likelihood 2D fit on M_T^{WW} and $M_{ll\gamma'}$, using SR (splitting 0 jet and >=1 jet) and 2VR
- Limit on Higgs Yukawa couplings with light quarks (u,d,s,c)

*WW*γ [CMS PAS SMP-22-006]

- Background treatment
 - Non prompt photon/lepton
 - $j \rightarrow \gamma$ main background; Data driven estimation in W+jets Control Region (CR)
 - $j \rightarrow e$ significant background; Data driven fake rate estimate in dijet CR
 - Validation; Top+γ VR with ≥ 1 b-jet for both background; Same flavor lepton final state CR for j→ e background
 - $WZ\gamma$ and top; reduced by b-jet veto

Limit on Higgs	Yukawa couplings
----------------	------------------

Process	σ_{up} pb exp.(obs.)	Yukawa couplings limits exp.(obs.)
$u\overline{u} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.085)	$ \kappa_{\rm u} \le 13000 \ (16000)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e \mu \gamma$	0.058 (0.072)	$ \kappa_{\rm d} \leq 14000 \ (17000)$
$s\overline{s} ightarrow H + \gamma ightarrow e \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \leq 1300 \ (1700)$
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)	$ \kappa_{\rm c} \leq 110(200)$

WZγ [STDM-2019-17]

- First measurement of WZγ cross section with 6.3 (5.0) standard deviation observed (expected)
 - $\sigma_{\rm measured} = 2.01 \pm 0.3 \ ({\rm stat}) \pm 0.16 \ ({\rm syst})$ fb within 1.5σ of theory prediction
 - $\sigma_{\text{Theory}} = 1.5 \pm 0.06 \text{ fb}$
- Using Illγ channel one same flavor opposite charge pair with 140fb⁻¹ at 13TeV
 - $|m_{e(W)\gamma} m_Z| > 10 \text{ GeV}$
 - $m_{l(Z)l(Z)} > 81$ GeV for FSR reduction
 - Profile likelihood fit of the 4 e/ μ final states (3 bins, 1SR and 2CR)
- Background treatment
 - $j \rightarrow \gamma$ background; reduced by $m_{e(W)\gamma}$ selection; data driven fake rate estimation in looser identification/ isolation selection CD using Z+jets sample
 - $j \rightarrow l$ background; data driven fake rate estimation in looser identification/ isolation selection CD using dijet sample
 - $ZZ\gamma$ and $ZZ(e \rightarrow \gamma)$; normalized with dedicated CR

Ζγγ [Phys. J. C 83, 539]

- Fiducial cross section
 - $\sigma_{\rm measured} = 2.45 \pm 0.20 \ ({\rm stat}) \pm 0.22 \ ({\rm syst}) \pm 0.04 ({\rm lumi}) \ {\rm fb}$ measurement with 12% precision
- Using e/ μ channel with 139 fb⁻¹ at 13 TeV
 - $(m_{ll} + min(m_{ll\gamma,1}, m_{ll\gamma,2})) > 2M_Z$ for FSR contribution
 - Differential cross-sections (6 kinematic observables: $E_T^{\gamma 1}, E_T^{\gamma 2}, p_T^{ll}, p_T^{ll\gamma\gamma}, m_{\gamma\gamma}, m_{ll\gamma\gamma}$
- Background treatment
 - $j \rightarrow \gamma$ main background; data driven fake rate estimate using $Z\gamma$ +jet and Z+jet
 - $tt\gamma\gamma$ with leptonic decay from top quark (second contribution); normalized using CD with opposite sign e/μ pair
 - $Z\gamma + \gamma$ and $Z + \gamma\gamma$ from pile-up; Uncertainties computed via signal simulation reweighed to pile-up background p_T spectra
 - $e \rightarrow \gamma$; Modelled by ZZ and ZW γ simulation
 - Z(ll)H(ll); Estimated from simulation

Distinction between ISR and FSR events when the Z boson is on-shell

Ζγγ [Phys. J. C 83, 539]

- Limit set on aQGC operators using EFT approach
- $O8_{T,1}, O8_{T,2}, O8_{T,6}, O8_{T,7}$ reduced up to two order of magnitude at 8 TeV (Phys. Rev. D 93, 112002)

Vγγ [JHEP10(2021)174]

- $Z\gamma\gamma$ fiducial cross section
 - $\sigma(Z\gamma\gamma) = 5.41^{+0.58}_{-0.55} \text{ (stat)}^{+0.64}_{-0.70} \text{ (syst)} \pm 0.06 \text{ (PDF + scale) fb4.8}$ (5.8) standard deviation observed (expected)
- $W\gamma\gamma$ fiducial cross section
 - $\sigma(W\gamma\gamma)^{meas} = 13.6 \pm 1.9 \text{ (stat)} \pm 0.4 \text{ (syst)} \pm 0.08 \text{ (PDF + scale) fb}$ 3.1 (4.5) standard deviation observed (expected)
- Using e/µ channel with 137 fb⁻¹ at 13 TeV
 - Event removed if $|m_{e,\gamma} m_Z| < 5$ GeV or $|m_{e,\gamma\gamma} m_Z| < 5$ GeV
 - Binned likelihood fit on diphoton p_T distribution

CERN

10

Vγγ [JHEP10(2021)174]

- Background treatment:
 - $j \rightarrow \gamma$, dominant for both $W\gamma\gamma$ and $Z\gamma\gamma$; data-driven fakes rate estimates
 - $e \rightarrow \gamma$, important in $W(e)\gamma\gamma$
 - Coming from $Z\gamma$ events
 - Corrector factor computed in CR ($|m_{e,\gamma}|ead m_Z| < 5$ GeV removed) with fit on $m_{e,\gamma}|ead$
 - $VH(\gamma\gamma)$ neglected

CERN

• Limit set on 10 aQGC operators using EFT approach

	${ m W}\gamma\gamma({ m TeV}^{-4})$		${ m Z}\gamma\gamma({ m TeV}^{-4})$	
Parameter	Expected	Observed	Expected	Observed
$f_{ m M2}/\Lambda^4$	[-57.3, 57.1]	[-39.9, 39.5]		
$f_{ m M3}/\Lambda^4$	[-91.8, 92.6]	[-63.8,65.0]		
$f_{ m T0}/\Lambda^4$	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]
$f_{ m T1}/\Lambda^4$	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]
$f_{\mathrm{T2}}/\Lambda^4$	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]
$f_{ m T5}/\Lambda^4$	[-0.76, 0.84]	[-0.52,0.60]	[-2.44, 2.52]	[-2.92, 2.92]
$f_{ m T6}/\Lambda^4$	[-0.92,1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]
$f_{ m T7}/\Lambda^4$	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]
$f_{ m T8}/\Lambda^4$			[-0.90, 0.94]	[-1.06, 1.10]
$f_{ m T9}/\Lambda^4$			[-1.54, 1.54]	[-1.82, 1.82]

Wγγ [STDM-2018-33]

- First measurement of $W\gamma\gamma$ at 5.6 (5.6) standard deviation observed (expected)
 - $\sigma_{\text{measured}} = 12.2 \pm 1.0 \text{ (stat}_{-1.8}^{+1.9} \text{ (syst)} \pm 0.01 \text{(lumi)}$ fb in agreement with the SM prediction
- Using e/μ channel with 140 fb⁻¹ at 13 TeV
 - b-jet veto and E_T miss > 40 GeV selection
 - 4 bin likelihood fit (using topCR, topVR, and SR)
- Background treatment:

- $j \rightarrow \gamma$ main background; 2D (leading/sub-leading) template fit of photon isolation energy in data
- $e \rightarrow \gamma$; Data driven fake rate estimate in Z \rightarrow ee/e γ CR
- Top background; Reduced via b veto; Dedicated CR (with >= 1 b-jet) for fit constrain; Low E_{mes} region (with >= 1 b-jet) for validation

Measurement of Higgs boson production in association with top quarks

- Two ways to measure top-higgs coupling
- Dominant production mode of the Higgs boson at the LHC
- Proceeds primarily through a top quark loop

$t\bar{t}H(H \to b\bar{b})$

$t\bar{t}H(H \rightarrow b\bar{b})$ [JHEP06(2022)97]

- Single lepton and dilepton regions
- Signal and control regions depending on number of jets and b-jets
- Single lepton boosted for Higgs p_T > 300 GeV
- Classification BDT for signal regions and yields for control regions in fit

$t\bar{t}H(H \rightarrow b\bar{b})$ [JHEP06(2022)97]

Inclusive measurement

- Total uncertainty dominated by tt+≥1b modelling systematics
- No theoretical constraints applied to its cross section
- $k(t\bar{t} + \ge b) = 1.28 \pm 0.08$

CÈRN

18

$t\bar{t}H(H \rightarrow b\bar{b})$ [JHEP06(2022)97]

Differential measurement

- Statistical and systematic uncertainties of similar size in most bins
- Results compatible with the SM predictions within 1-2 σ (but several negative fit values)

$t\bar{t}H(H \rightarrow b\bar{b})$ [CMS-PAS-HIG-19-011]

CMS

- Full hadronic, single lepton and dilepton regions
- Signal and control regions depending on number of jets and b-jets
- Multiclass artificial neural networks (ANNs) separately for each year
- ANN output and likelihood ratio of outputs used in fit
- Different treatment of $t\bar{t}+\geq 1b$ background wrt ATLAS

Inclusive measurement

CMS

$t\bar{t}H(H \rightarrow b\bar{b})$ [CMS-PAS-HIG-19-011]

size for differential

µtн < 14.6 @ 95%CL With µtīн fixed to 1 and treated as background

Coupling measurement Assuming SM Higgs boson coupling structure

 $\sigma_{tHq} = (2.63\kappa_t^2 + 3.58\kappa_V^2 - 5.21\kappa_t\kappa_V)\sigma_{tHq}^{SM}$ $\sigma_{tHW} = (2.91\kappa_t^2 + 2.40\kappa_V^2 - 4.22\kappa_t\kappa_V)\sigma_{tHW}^{SM}$

Simultaneous fit

CERN

Production of four-top-quarks

- Heaviest particle final state
- four-top-quark has a very tiny cross section in the SM
- $\sigma_{SM}(t\bar{t}t\bar{t})$ ~12 fb

CERN

Predictions for four tops

• Rare process predicted by the SM and has never been observed

Dominant production of $t\bar{t}t\bar{t}$

Predictions for four tops

- Four top quarks can be produced via an offshell SM Higgs boson
- Sensitive to the magnitude and CP properties of the Yukawa coupling of the top quark to the Higgs boson

[arXiv:1611.05032 [hep-ph]]

Four top quarks can be sensitive to BSM scenarios

New physics beyond our energy reach

"Four-fermion contact interaction"

26

Signatures

- We have four tops in our final state
- Each **top** decays to **Wb** and the detector signature is defined by:
 - The presence of four b-quarks
 - The decays of the W bosons

Signatures

CERN

- We have four tops in our final state
- Each **top** decays to **Wb** and the detector signature is defined by:
 - The presence of four b-quarks
 - The decays of the W bosons

22SS/32 Channel

Example from the 3I channel

22SS/32 Channel

Example from the 3I channel

Signal region selection

- Selection requirements in the **2\\$S**/**3\\$** (signal region):
 - 2 same-sign leptons or 3 leptons (l=e,µ)
 - ≥ 6 jets
 - ≥ 2 b-tagged jets

• H_T > 500 GeV ;
$$H_T = \sum_{T}^{leptons} P_T + \sum_{T}^{jets} P_T$$

CERN

What else can produce many leptons & jets ?

Control regions are designed to evaluate $t\bar{t}W$ and fake/ non-prompt background

Fake/non-prompt leptons

- electrons from γ conversion in detector
- a virtual photon γ^* leading to an e+e– pair (Low M_{ee})
- electrons (muons) from heavy-flavour (HF) decay

CERN

Fake/non-prompt leptons

- Charge mis-assignment (relevant for the 2^lSS channel)
- Charge of electron is mis-measured, caused by:
 - Bremsstrahlung photon emission followed by its conversion
 - Mis-measured track curvature

+: lepton from instrumental effect

Template method to estimate fake/non-prompt leptons

- Template Method is used to determine the major backgrounds
 - Background shapes are estimated from MC
 - Normalisation is obtained from the fit
 - 4 free parameters included in the signal extraction fit to determine normalization (HF electron, HF muon, material conversions, virtual photon conversions)

Template method to estimate fake/non-prompt leptons

[Eur. Phys. J. C 83 (2023) 496] 36

ttW background

 Estimate ttW background normalization per jet bin from data based on the evolution

$$R(j) = \frac{N(j+1)}{N(j)}$$

- R(j) = a₀ for j>j threshold
- R(n) = a1/(n+1) for n<j threshold where n=number of additional jets to the hard process
- Shape from MC simulation

CERN

[Eur. Phys. J. C 83 (2023) 496]

ttW background

- Four ttW control regions to determine
 - a₀, a₁

CERN

<i>ttW</i> background	a_0	a_1	$NF_{t\bar{t}W^+(4jet)}$	$NF_{t\bar{t}W^-(4jet)}$
Value	0.51 ± 0.10	$0.22^{+0.25}_{-0.22}$	$1.27^{+0.25}_{-0.22}$	$1.11^{+0.31}_{-0.28}$

Disentangling Signal from Background

- Look for variables showing kinematic differences between signal and background
 - Many jets, b-jets, leptons
- A multivariate discriminant built with a Graph Neural Network (GNN) is used
- Example: use b-jet "tagging" variable continuously and across all jets

Four-top cross section result

- Signal extraction
 - simultaneous fit to GNN in SR and distributions in 8 CRs
 - Extract the signal strength $\mu = \sigma_{t\bar{t}t\bar{t}}/\sigma^{SM}_{t\bar{t}t\bar{t}}$
 - $\mu = 1.9 \pm 0.4$ (stat) $^{+0.7}_{-0.4}$ (syst); 6.1 σ (4.3 σ expected)
- Measured four-top cross-section: $\sigma(t\bar{t}t\bar{t}) = 22.5^{+6.6}_{-5.6} fb$
- Observation of the 4-top quark production!
- Consistent with the SM prediction at $1.8/1.7 \sigma$
- Largest systematic uncertainty from 4-top modelling, ttW DD parameters

Summary of ATLAS and CMS measurements

ATLAS+CMS Preliminary LHCtopWG		√ s = 13 TeV, June 2023	
$\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5} \text{ (scale) fb} \qquad \sigma_{t\bar{t}t\bar{t}} = 13.4^{+1.0}_{-1.8} \text{ (scale+PDF) fb} \qquad tot. stat.$ $JHEP 02 (2018) 031 \qquad arXiv:2212.03259 \qquad tot. stat.$ $NLO(QCD+EW) \qquad NLO(QCD+EW)+NLL'$			
		$\sigma_{\text{t+t+}} \pm \text{tot.} (\pm \text{stat.} \pm \text{syst.})$	Obs. Sig.
ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118	+ = + - 1	26_{-15}^{+17} (±8 $_{-13}^{+15}$) fb	1.9 σ
ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118	₽ ↓ ▼ ↓ 4	24 ⁺⁷ ₋₆ (±4 ⁺⁵ ₋₄) fb	4.7 σ
CMS, 1L/2LOS/all-had, 138 fb ⁻¹ arXiv:2303.03864	⊢ ∔ ● ∔ 4	36 $^{+12}_{-11}$ (±7 $^{+10}_{-8})$ fb	3.9 σ
CMS, comb., 138 fb⁻¹ arXiv:2303.03864	⊢▼ ∥	17±5 (±4 ±3) fb	4.0 σ
ATLAS, 2LSS/3L, 140 fb ⁻¹ arXiv:2303.15061	₩-■-₩	22.5 ^{+6.6} (^{+4.7 +4.6}) _{-5.5} (^{+4.7 +4.6}) _{-4.3 -3.4}) fb	6.1σ
CMS, 2LSS/3L, 138 fb ' arXiv:2305.13439	┠╼╾╢	17.7 $^{+4.4}_{-4.0}$ ($^{+3.7}_{-3.5}$ $^{+2.3}_{-1.9}$) fb	5.6 σ
0	20 40	60 80 100 σ _{ttt} [fb]) 120

[ATL-PHYS-PUB-2023-013]

Three-top-quark production

ttt

- Final state signature is similar to four top signal
- Populates regions of high GNN score
- In SM *t*t
 t t
- 30% uncertainty on $t\bar{t}t$ cross section
 - Big thanks to Gauthier Durieux for these predictions!

Three-top-quark production

43

• Limits on heavy flavour fermion operators in EFT (one parameter variation)

Operators	Expected C_i/Λ^2 [TeV ⁻²]	Observed C_i/Λ^2 [TeV ⁻²]
O_{OO}^1	[-2.4,3.0]	[-3.5,4.1]
$O_{Ot}^{\tilde{1}\tilde{c}}$	[-2.5,2.0]	[-3.5 <mark>,3.0]</mark>
$O_{tt}^{\widetilde{1}}$	[-1.1,1.3]	[-1.7,1.9]
O_{Qt}^8	[-4.2,4.8]	[<mark>-6.2</mark> ,6.9]

Conclusions

- Run 2 brought us to an unprecedented centre-of-mass energy of 13 TeV!
- Opened up measurements to new rare SM processes
 - SM, Top, & Higgs groups working to produce precise & lasting measurements
- Teaches us about the SM
- Improves our theoretical calculations, MC modelling, and understanding of CP calibrations and uncertainties
- Can uncover unexpected deviations from the SM
- ATLAS & CMS published many interesting measurements using full Run 2 data-set at 13 TeV

