Recent advances in flavor physics

Marzia Bordone

Brookhaven Forum 2023:
Advancing Searches for New Physics
05.10.2023

Outline:

1. The problem of flavour
2. Theoretical and experimental status
3. A glance into BSM physics

Motivation

Despite the SM successes, there are open problems:

Motivation

Despite the SM successes, there are open problems:

dark matter/dark energy
flavour hierarchies

neutrino masses

Motivation

Despite the SM successes, there are open problems:

Motivation

Despite the SM successes, there are open problems:

Motivation

Despite the SM successes, there are open problems:

The (two) flavour problems

1. The SM flavour problem: The measured Yukawa pattern doesn't seem accidental
\Rightarrow Is there any deeper reason for that?
2. The NP flavour problem: If we regard the SM as an EFT valid below a certain energy cutoff Λ, why don't we see any deviations in flavour changing processes?
\Rightarrow Which is the flavour structure of BSM physics?

The SM flavour problem

$$
\mathcal{L}_{\text {Yukawa }} \supset Y_{u}^{i j} \bar{Q}_{L}^{i} H u_{R}^{j}
$$

The SM flavour problem

$$
\mathcal{L}_{\text {Yukawa }} \supset Y_{u}^{i j} \bar{Q}_{L}^{i} H u_{R}^{j}
$$

Exact $U(2)^{n}$ limit

The SM flavour problem

$$
\mathcal{L}_{\text {Yukawa }} \supset Y_{u}^{i j} \bar{Q}_{L}^{i} H u_{R}^{j}
$$

An approximate $U(2)^{n}$ is acting on the light families!

The SM flavour problem

$$
\mathcal{L}_{\text {Yukawa }} \supset Y_{u}^{i j} \bar{Q}_{L}^{i} H u_{R}^{j}
$$

An approximate $U(2)^{n}$ is acting on the light families!

The NP flavour problem

- In the SM: accidental $U(3)^{5} \rightarrow$ approx $U(2)^{n}$

The NP flavour problem

- In the SM: accidental $U(3)^{5} \rightarrow$ approx $U(2)^{n}$
- What happens when we switch on NP?

The NP flavour problem

$$
\mathcal{L}=\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {Higgs }}+\sum_{d, i} \frac{c_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{d}
$$

- What is the energy scale of NP?
- Why haven't observed any violation of accidental symmetries yet?

no breaking of the $U(2)^{n}$ flavour symmetry at low energies

Partonic vs Hadronic

Fundamental challenge to match partonic and hadronic descriptions

What's the problem for BSM?

B-physics

Higgs physics

What's the problem for BSM?

What's the problem for BSM?

How to satisfy all the constraints at the same time?

Theoretical and experimental status

Exclusive matrix elements

$$
\left\langle H_{q}\right| J_{\mu}\left|H_{b}\right\rangle=\sum_{i} S_{\mu}^{i} \mathcal{F}_{i}
$$

- Lattice QCD
- QCD SR, LCSR
- HQET (exploit $m_{b, c} \rightarrow \infty$ limit) + Data driven fits
- Dispersive analysis

Exclusive matrix elements

- Lattice QCD
- QCD SR, LCSR
- HQET (exploit $m_{b, c} \rightarrow \infty$ limit) + Data driven fits
- Dispersive analysis

Sum Rules points

"Anomalies" in $b \rightarrow s \ell^{+} \ell^{-}$transitions

Lepton Flavour Universality violation

$$
R_{X}=\frac{\mathcal{B}\left(H_{b} \rightarrow X \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(H_{b} \rightarrow X e^{+} e^{-}\right)}
$$

- Test of Lepton Flavour Universality, which is one of the building principles of the SM
- With ratios, we reduce hadronic uncertainties at large extent
- For $q^{2} \gg m_{\ell}^{2} \rightarrow R_{X}=1$
- Leading theoretical uncertainty coming from QED effects $\sim 1 \%$

MB, Isidori, Pattori, '16 Isidori, Lancerini, Nabeebaccus, Zwicky, '22

meformen ronzus. 31

$$
b \rightarrow s \ell \ell
$$

- Wilson coefficients are calculated at NNLO
- The running to $\mu=m_{b}$ is known

$$
B \rightarrow K^{(*)} \ell^{+} \ell^{-}
$$

$$
\mathcal{A}_{\lambda}^{L, R}=\mathcal{N}_{\lambda}\left\{\left(\mathcal{C}_{9} \mp \mathcal{C}_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[\mathcal{C}_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

- Local: $\mathcal{F}_{\lambda}^{(T)}=\left\langle K^{(*)}(k)\right| \bar{s} \Gamma_{\lambda}^{(T)} b|\bar{B}(k+q)\rangle$
- form factors calculated on lattice and LCSR
- Non-local: $\mathcal{H}_{\lambda}\left(q^{2}\right)=i P_{\mu}^{\lambda} \int d^{4} x e^{i q x}\left\langle K^{(*)}(k)\right| T\left\{\mathcal{J}_{\text {em }}^{\mu}, C_{i} \mathcal{O}_{i}(0)\right\}|\bar{B}(k+q)\rangle$ lepton flavour universal

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+C_{9}^{\mathrm{LD}}\left(q^{2}\right)
$$

How do we parametrise these long-distance effects?

$$
B \rightarrow K^{(*)} \ell^{+} \ell^{-}
$$

$$
\mathcal{A}_{\lambda}^{L, R}=\mathcal{N}_{\lambda}\left\{\left(\mathcal{C}_{9} \mp \mathcal{C}_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[\mathcal{C}_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

- Local: $\mathcal{F}_{\lambda}^{(T)}=\left\langle K^{(*)}(k)\right| \bar{s} \Gamma_{\lambda}^{(T)} b|\bar{B}(k+q)\rangle$
- form factors calculated on lattice and LCSR
- Non-local: $\mathcal{H}_{\lambda}\left(q^{2}\right)=i P_{\mu}^{\lambda} \int d^{4} x e^{i q x}\left\langle K^{(*)}(k)\right| T\left\{\mathcal{J}_{\text {em }}^{\mu}, C_{i} \mathcal{O}_{i}(0)\right\}|\bar{B}(k+q)\rangle$ lepton flavour universal

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+C_{9}^{\mathrm{LD}}\left(q^{2}\right)
$$

How do we parametrise these long-distance effects?

$$
B \rightarrow K^{(*)} \ell^{+} \ell^{-}
$$

$$
\mathcal{A}_{\lambda}^{L, R}=\mathcal{N}_{\lambda}\left\{\left(\mathcal{C}_{9} \mp \mathcal{C}_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[\mathcal{C}_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

- Local: $\mathcal{F}_{\lambda}^{(T)}=\left\langle K^{(*)}(k)\right| \bar{s} \Gamma_{\lambda}^{(T)} b|\bar{B}(k+q)\rangle$
- form factors calculated on lattice and LCSR
- Non-local: $\mathcal{H}_{\lambda}\left(q^{2}\right)=i P_{\mu}^{\lambda} \int d^{4} x e^{i q x}\left\langle K^{(*)}(k)\right| T\left\{\mathcal{J}_{\text {em }}^{\mu}, C_{i} \mathcal{O}_{i}(0)\right\}|\bar{B}(k+q)\rangle$ lepton flavour universal

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+C_{9}^{\mathrm{LD}}\left(q^{2}\right)
$$

How do we parametrise these long-distance effects?

Charm-loop effects in $b \rightarrow s \ell^{+} \ell^{-}$

- Conformal transformation $q^{2} \mapsto z\left(q^{2}\right)$, with $|z|<1$
- $C_{9}^{\mathrm{LD}} \propto \alpha_{n} z^{n}$
- Dispersive analysis allow to determine the truncation order of the series
[2011.09813,2206.03797]
- Effects are small

Charm-loop effects in $b \rightarrow s \ell^{+} \ell^{-}$

- Conformal transformation $q^{2} \mapsto z\left(q^{2}\right)$, with $|z|<1$
- $C_{9}^{\mathrm{LD}} \propto \alpha_{n} z^{n}$
- Dispersive analysis allow to determine the truncation order of the series
[2011.09813,2206.03797]
- Effects are small

Is this all?

Charm-loop effects in $b \rightarrow s \ell^{+} \ell^{-}$

- Conformal transformation $q^{2} \mapsto z\left(q^{2}\right)$, with $|z|<1$
- $C_{9}^{\mathrm{LD}} \propto \alpha_{n} z^{n}$
- Dispersive analysis allow to determine the truncation order of the series
- Effects are small

Is this all?

[2212.10516]

- Are these contributions included?
- Are they large that they can reconcile the tension in $B \rightarrow K^{*} \mu \mu$?

Charm loop effects in $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$

MB, Isidori, Maechler, Tinari, to appear

- Can we extract some hints of the shape of $C_{9}^{\mathrm{LD}}\left(q^{2}\right)$ from data?
\Rightarrow NP yields a constant effect in the whole kinematic region
- Is the current sensitivity enough to claim anything?

$$
C_{9}^{\mathrm{eff}}=C_{9}+\sum_{V} \eta_{V}^{\lambda} e^{i \delta_{V}^{\lambda}} \frac{q^{2}}{\left(m_{V}^{2}\right)} \frac{m_{V} \Gamma_{V}}{m_{V}^{2}-q^{2}-i m_{V} \Gamma_{V}}
$$

No evidence for q^{2} dependence

Inclusive vs. Exclusive determination of $V_{c b}$

Major impact for

- Test of unitarity for the CKM
- $\epsilon_{K} \sim\left|V_{c b}\right|^{4}$
- $\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right) \sim\left|V_{c b}\right|^{2}$
- $\mathcal{B}(B \rightarrow K \nu \bar{\nu}) \sim\left|V_{c b}\right|^{2}$

Lepton Flavour Universality Violation 2

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)}
$$

- Combined tension of 3.3σ
- Other measurements like $R_{J / \psi}, R_{\Lambda_{c}}, R\left(X_{c}\right)$ are less significant and don't spoil the actual combination

$$
B \rightarrow D
$$

- Belle+Babar data and HPQCD+FNAL/MILC Lattice points

$$
\left|V_{c b}\right|=(40.49 \pm 0.97) \times 10^{-3}
$$

$$
B \rightarrow D^{*}
$$

- Until two years ago, only lattice points at zero-recoil were available
- Additional inputs were needed from LCSR and/or experimental data
- The use of Effective Theory like HQET was crucial to provide predictions
$F_{i}=\left(a_{i}+b_{i} \frac{\alpha_{s}}{\pi}\right) \xi+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{b}} \sum_{j} c_{i j} \xi_{\mathrm{SL}}^{j}+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}} \sum_{j} d_{i j} \xi_{\mathrm{SL}}^{j}+\left(\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}}\right)^{2} \sum_{j} g_{i j} \xi_{\mathrm{SSL}}^{j}$
$\Rightarrow 1 / m, \alpha_{s}$ expansion parameters
$\Rightarrow \xi, \xi_{\mathrm{SL}}^{i}, \xi_{\mathrm{SSL}}^{i}$ are the heavy quark form factors and are universal for all transitions $B^{(*)} \rightarrow D^{(*)}$

Lattice calculations at $q^{2} \neq q_{\text {max }}^{2}$

- FNAL/MILC '21
- HQE@1/ m_{c}^{2}
- Exp data (BGL)
- JLQCD '23
- HPQCD '23
- Tensions between different lattice determinations, experimental data and non-lattice theory determination
- No consensus yet, ongoing checks
- New Belle analysis available

Pheno Status

- For what concerns $V_{c b}$, the inclusive determination is stable
- The lack of a consensus for $B \rightarrow D^{*}$ form factors results in a large spread in the values for $V_{c b}$ and $R_{D^{*}}$
- The situation is rather unclear
- A lot of WIP between different theory communities

$B^{+} \rightarrow K^{+} \nu \bar{\nu}$ from Belle II

- First evidence of the $B^{+} \rightarrow K^{+} \nu \bar{\nu}$ process at 3.6σ with

$$
\mathcal{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)=\left(2.4 \pm 0.5(\text { stat })_{-0.4}^{+0.5}(\text { syst })\right) \times 10^{-5}
$$

- Tension with the SM of $\sim 2.8 \sigma$

A glance into BSM physics

Status of high energy bounds

Flavour Non-Universal New Physics

Basic idea:

- 1st and 2nd have small masses and small couplings to NP because they are generated by dynamics at a heavier scale
- 3rd generation is linked to dynamics at lower scales and has stronger couplings

Flavour deconstruction:
fermion families interact with different gauge groups and flavour hierarchies emerge as accidental symmetries

Energy

Flavour Non-Universal New Physics

$$
\mathrm{G}^{12} \times \mathrm{G}^{3} \downarrow \begin{aligned}
& U(2)^{n} \text { limit } \\
& \text { NP coupled }
\end{aligned}
$$

to 3rd gen only
broken $U(2)^{n}$

Energy

What do we expect in the SMEFT?

Using $S U(2)_{L}$ invariance, we have

$$
\begin{gathered}
\mathcal{L}_{\mathrm{EFT}} \supset \frac{C_{b s \tau \tau}}{\Lambda^{2}}\left(\bar{b}_{L}^{i} \gamma_{\nu} s_{L}^{j}\right)\left(\bar{\nu}_{\tau} \gamma^{\mu} \nu_{L}\right) \\
\\
\begin{array}{l}
\text { From } U(2)^{n} \Rightarrow C_{b s \tau \tau} \sim V_{c b} \mathcal{O}(1) \\
\begin{array}{l}
\text { Belle II measurement of } B \rightarrow K \nu \bar{\nu} \\
\text { in agreement with } U(2)^{n}
\end{array}
\end{array} \text { 有 }
\end{gathered}
$$

CMS
$138 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

The present hints align well together, but it is too soon to claim victory...

Conclusions

- Flavour physics is a powerful test for new physics living at different energy scales
- At the current status, we haven't observed any clear sign of new physics
- No clear sign of new physics can hint to a peculiar structure for the flavour structure of NP and to flavour deconstruction
\Rightarrow Theoretical and Experimental efforts will shed light on puzzles in hadronic predictions, aiming to a deeper understanding of the SM
\Rightarrow From the phenomenological point of view, a few hints point to a strong link between new physics and the third generations, with possible new physics reach close to the current searches

Appendix

$B \rightarrow D^{(*)}$ form factors

- 7 (SM) +3 (NP) form factors
- Lattice computation for $q^{2} \neq q_{\max }^{2}$ only for $B \rightarrow D$
- Calculation usually give only a few points
- q^{2} dependence must be inferred
- Conformal variable z

$$
z\left(q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}
$$

- $t_{+}=\left(m_{B}+m_{D^{(*)}}\right)^{2}$ pair production threshold
- $t_{0}<t_{+}$free parameter that can be used to minimise $\left|z_{\max }\right|$
- $|z| \ll 1$, in the $B \rightarrow D$ case $|z|<0.06$

The HQE parametrisation 1

- Expansion of QCD Lagrangian in $1 / m_{b, c}+\alpha_{s}$ corrections
[Caprini, Lellouch, Neubert, '97]
- In the limit $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ form factors are given by a single Isgur-Wise function

$$
F_{i} \sim \xi
$$

- at higher orders the form factors are still related \Rightarrow reduction of free parameters

$$
F_{i} \sim\left(1+\frac{\alpha_{s}}{\pi}\right) \xi+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{b}} \xi_{\mathrm{SL}}^{i}+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}} \xi_{\mathrm{SL}}^{i}
$$

- at this order 1 leading and 3 subleading functions enter
- ξ^{i} are not predicted by HQE, they have to be determined using some other information

The HQE parametrisation 2

- Important point in the HQE expansion: $q^{2}=q_{\text {max }}^{2}$
- At this point Luke's Theorem applies: the subleading corrections vanish for some form factors
- The leading Isgur-Wise function is normalised: $\xi\left(q^{2}=q_{\text {max }}^{2}\right)=1$
- Problem: contradiction with lattice data!
- $1 / m_{c}^{2}$ corrections have to be systematically included
- well motivated also since $\alpha_{s} / \pi \sim 1 / m_{b} \sim 1 / m_{c}^{2}$

The HQE results

Data points:

- theory inputs only (Lattice QCD, QCD Sum Rules, Light-cone Sum Rules, Dispersive Bounds)

- Expansion in z up to order

Comparison with kinematical distributions

Fit stability

- BGL fit to Belle 2017 and 2018 data (yellow)
- HQE fit $2 / 1 / 0$ (red)
- HQE fit $3 / 2 / 1$ (blue)

- compatibily of HQE fit with data driven one
- $2 / 1 / 0$ underestimates massively uncertainties

Phenomenological results

- $V_{c b}$ extraction

$$
V_{c b}^{\text {average }}=(41.1 \pm 0.5) \times 10^{-3}
$$

compatibility of 1.8σ between inclusive and exclusive

- Universality ratios

$$
R_{D^{*}}=0.2472 \pm 0.0050 \quad R_{D_{s}^{*}}=0.2472 \pm 0.0050
$$

towards the combined 4σ discrepancy

- We observe no $S U(3)_{F}$ breaking
- Good compatibility with $\operatorname{LHCb} \bar{B}_{s} \rightarrow D_{s}^{(*)}$ analysis in 2001.03225

Inclusive vs Exclusive determination of $V_{c b}$

Inclusive determination of $V_{c b}$:

$$
V_{c b}^{\text {incl }}=(42.00 \pm 0.65) \times 10^{-3}
$$

[P. Gambino, C. Schwanda, 1307.4551
A. Alberti, P. Gambino, K. J. Healey, S. Nandi, 1411.6560
P. Gambino, K. J. Healey, S. Turczyk, 1606.06174]

Exclusive determination of $V_{c b}$: depends on the data set used and the assumptions for the hadronic parameters

- $B \rightarrow D \ell \bar{\nu}:\left.V_{c b}^{\text {excl }}\right|_{B D}=(40.49 \pm 0.97) \times 10^{-3}$
[P.Gambino, D.Bigi, 1606.08030, + • •]
- $B \rightarrow D^{*} \ell \bar{\nu}$: not a general consensus yet, but systematically lower $\left.V_{c b}^{\text {excl }}\right|_{B D}$
[P.Gambino, M.Jung, S.Schacht, ' 19 F.Bernlochner, Z. Ligeti, M. Papucci, D. Robinson,'17 + •]]
- $B_{s} \rightarrow D_{s}^{(*)} \ell \bar{\nu}$: new extraction by $\mathrm{LHCb} \Rightarrow$ still large uncertainties
[2001.03225]

No evidence so far that this tension is due to NP
[M. Jung, D. Straub, 1801.01112]

HQET in a nutshell

- In HQET it is convenient to work with velocities instead of momenta
- Instead of q^{2} we use the dimensionless variable $w=v_{B} \cdot v_{D^{*}}$
- When the $B(b)$ decays such that the $D^{*}(c)$ is at rest in the $B(b)$ frame

$$
v_{B}=v_{D^{*}} \quad \Rightarrow \quad w=1
$$

- The brown muck doesn't realise that anything changed
- At zero recoil, the leading IW function is normalized

$$
\xi(w=1)=1
$$

$V_{c b}$ and NP

- If we allow LFUV between μ and electrons

$$
\tilde{V}_{c b}^{\ell}=V_{c b}\left(1+C_{V_{L}}^{\ell}\right)
$$

- Fitting data from Babar and Belle

$$
\frac{\tilde{V}_{c b}^{e}}{\tilde{V}_{c b}^{\mu}}=1.011 \pm 0.012
$$

$$
\begin{aligned}
& \frac{1}{2}\left(\tilde{V}_{c b}^{e}+\tilde{V}_{c b}^{\mu}\right)=(3.87 \pm 0.09) \% \\
& \frac{1}{2}\left(\tilde{V}_{c b}^{e}-\tilde{V}_{c b}^{\mu}\right)=(0.022 \pm 0.023) \%
\end{aligned}
$$

BGL vs CLN

- Both BGL and CLN parametrisation of form factors rely on using unitarity arguments.
[Boyd, Grinstein, Lebed, '95
Caprini, Neubert, Lellouch, '98]
- CLN relies on HQET.
- Unfolded distributions from Belle allowed to repeat an independent fit.

BGL vs CLN parametrisations

CLN

- Expansion of FFs using HQET
- $1 / m_{b, c}$ corrections included
- Expansion of leading IW function up to 2 nd order in $(w-1)$

BGL

- Based on analyticity of the form factors
- Expansion of FFs using the conformal variable z
- Large number of free parameters

Results: unitary bounds

Unitarity Bounds

$$
=i \int d^{4} x e^{i q x}\langle 0| T\left\{j_{\mu}(x), j_{\nu}^{\dagger}(0)\right\}|0\rangle=\left(g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)
$$

- If $q^{2} \ll m_{b}^{2}$ we can calculate $\Pi\left(q^{2}\right)$ via perturbative techniques $\Rightarrow \chi(0)$
- Dispersion relations link $\operatorname{Im}\left(\Pi\left(q^{2}\right)\right)$ to sum over matrix elements

$$
\sum_{i}\left|F_{i}(0)\right|^{2}<\chi(0)
$$

[Boyd, Grinstein,Lebed, '95 Caprini, Lellouch, Neubert, '97]

- The sum runs over all possible states hadronic decays mediated by a current $\bar{c} \Gamma_{\mu} b$
- The unitarity bounds are more effective the most states are included in the sum
- The unitarity bounds introduce correlations between FFs of different decays
- $B_{s} \rightarrow D_{s}^{(*)}$ decays are expected to be of the same order of $B_{u, d} \rightarrow D_{u, d}^{(*)}$ decays due to $S U(3)_{F}$ simmetry

Theory framework

$$
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle
$$

Theory framework

$$
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle
$$

$$
\sum_{n, i} \frac{1}{m_{b}^{n}} \mathcal{C}_{n, i} \mathcal{O}_{n+3, i}
$$

Theory framework

$$
\begin{gathered}
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle \\
\uparrow \\
\sum_{n, i} \frac{1}{m_{b}^{n}} \mathcal{C}_{n, i} \mathcal{O}_{n+3, i}
\end{gathered}
$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)| \mathcal{O}_{n+3, i}|B(p)\rangle$ are non perturbative
\Rightarrow They need to be determined with non-perturbative methods, e.g. Lattice QCD
\Rightarrow They can be extracted from data
\Rightarrow With large n, large number of operators

Theory framework

$$
\begin{gathered}
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle \\
\uparrow \\
\sum_{n, i} \frac{1}{m_{b}^{n}} \mathcal{C}_{n, i} \mathcal{O}_{n+3, i}
\end{gathered}
$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)| \mathcal{O}_{n+3, i}|B(p)\rangle$ are non perturbative
\Rightarrow They need to be determined with non-perturbative methods, e.g. Lattice QCD
\Rightarrow They can be extracted from data
\Rightarrow With large n, large number of operators

Theory framework

$$
\begin{gathered}
\Gamma_{s l}=\Gamma_{0} f(\rho)\left[1+a_{1}\left(\frac{\alpha_{s}}{\pi}\right)+a_{2}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+a_{3}\left(\frac{\alpha_{s}}{\pi}\right)^{3}-\left(\frac{1}{2}-p_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}\right. \\
\left.+\left(g_{0}+g_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}}+d_{0} \frac{\rho_{D}^{3}}{m_{b}^{3}}-g_{0} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots\right] \\
\mu_{\pi}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v}(i \vec{D})^{2} b_{v}|B\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v} \frac{i}{2} \sigma_{\mu \nu} G^{\mu \nu} b_{v}|B\rangle_{\mu}
\end{gathered}
$$

- Coefficients of the expansions are known
- Ellipses stands for higher orders

Theory framework

$$
\begin{gathered}
\Gamma_{s l}=\Gamma_{0} f(\rho)\left[1+a_{1}\left(\frac{\alpha_{s}}{\pi}\right)+a_{2}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+a_{3}\left(\frac{\alpha_{s}}{\pi}\right)^{3}-\left(\frac{1}{2}-p_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}\right. \\
\left.+\left(g_{0}+g_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}}+d_{0} \frac{\rho_{D}^{3}}{m_{b}^{3}}-g_{0} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots\right] \\
\mu_{\pi}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v}(i \vec{D})^{2} b_{v}|B\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v} \frac{i}{2} \sigma_{\mu \nu} G^{\mu \nu} b_{v}|B\rangle_{\mu}
\end{gathered}
$$

- Coefficients of the expansions are known
- Ellipses stands for higher orders

How do we constrain the OPE parameters?

- Lepton energy and hadronic invariant mass distributions can be used to extract non perturbative information
- Moments of the kinematic distributions

$$
\begin{aligned}
\left\langle E_{\ell}^{n}\right\rangle & =\frac{\int_{E_{\ell}>E_{\ell, \mathrm{cut}} d E_{\ell} E_{\ell}^{n} \frac{d \Gamma}{d E_{\ell}}}^{\Gamma_{E_{\ell}>E_{\ell, \mathrm{cut}}}}}{R^{*}}=\frac{\int_{E_{\ell}>E_{\ell, \mathrm{cut}} d E_{\ell} \frac{d \Gamma}{d E_{\ell}}}^{\int d E_{\ell} \frac{d \Gamma}{d E_{\ell}}}}{}
\end{aligned}
$$

- Similar definition for hadronic mass moments
- The moments give access to the distribution, but not to the normalisation
- They admit an HQE as the rate
\Rightarrow No $\mathcal{O}\left(\alpha_{s}^{3}\right)$ terms are known yet

An alternative for the inclusive determination

- q^{2} moments

$$
R^{*}=\frac{\int_{q^{2}>q_{\mathrm{cut}}^{2}} d q^{2} \frac{d \Gamma}{d q^{2}}}{\int_{0} d q^{2} \frac{d \Gamma}{d q^{2}}} \quad\left\langle\left(q^{2}\right)^{n}\right\rangle=\frac{\int_{q^{2}>q_{\mathrm{cut}}^{2}} d q^{2}\left(q^{2}\right)^{n} \frac{d \Gamma}{d q^{2}}}{\int_{0} d q^{2} \frac{d \Gamma}{d q^{2}}}
$$

- Exploits HQE to reduce numbers of higher dimensional operators [Fael, Mannel, Vos, '18]
- Preliminary result:

$$
\left|V_{c b}\right|=(41.69 \pm 0.63) \times 10^{-3}
$$

What's the issue with the previous determination?

- The q^{2} moments require a measurement of the branching ratio with a cut in q^{2} which is not available yet
- By extrapolating from the current available measurements, the branching ratio is lower then what used
- If the same branching ratios is used, the two methods give the same result The results for inclusive $V_{c b}$ are stable

SMEFT with Flavour 1

[Allwicher, Cornella, Isidori, Stefanek, in preparation]

SMEFT with Flavour 2

[Allwicher, Cornella, Isidori, Stefanek, in preparation]

\square flavor \square EW \square collider

C_{9} from $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$data

Inclusive vs. Exclusive determination of $V_{c b}$

The inclusive determination is solid

- The traditional determination using data for the hadronic mass moments and lepton energy moments yields stable results up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$ corrections in the width
[2011.13654]
MB, Capdevila, Gambino, '21
- New determination using q^{2} moments yields very compatible results
[2205.10274]

- Only caveat: QED corrections for charged current decays are enhanced by the Coulomb factor (for neutral B mesons)

MB, Bigi, Gambino, Haisch, Piccione ' 23
\Rightarrow The impact has to be checked for each measurement
The exclusive determination depends on the dataset and hadronic form factor used

- Work in progress on the theory side
- New experimental data are available and have to be still scrutinised

