Current and Future Neutrino Experiments

Dan Dwyer Brookhaven Forum 6 Oct. 2023

- The Era of Three-Flavor Mixing
- Pursuing Neutrino Mass
- Beyond Three-flavor Mixing

Neutrinos: The Era of Three-Flavor Mixing

History of Neutrino Masses and Mixing: Initial Evidence

Homestake Experiment:

Ambitious radiochemical experiment

Search for argon atoms in 100,000 g of Cl $\nu_{\rm e} + {}^{37}{\rm Cl} \longrightarrow {}^{37}{\rm Ar} + {\rm e}^{-}.$

Observed deficit relative to prediction

History of Neutrino Masses and Mixing: Initial Evidence

Kamiokande Experiment:

1-kton Water Cherenkov detector

Observed electrons scattered by solar neutrinos, with deficit similar to Homestake Experiment.

FIG. 3. Distribution in $\cos\theta_{Sun}$ of the combined 1040-day sample for $E_e \ge 9.3$ MeV. The value of the ratio data/SSM from this figure is 0.43 ± 0.06 .

History of Neutrino Masses and Mixing

Super-Kamiokande:

Observes disappearance of neutrinos produced in atmosphere

History of Neutrino Masses and Mixing

KamLAND:

Output sca

1 kton of liquid scintillator detects antineutrinos emitted by nuclear reactors

Observes energy-dependent disappearance / reappearance -> Neutrino flavor oscillation!

$$P(\bar{\mathbf{v}}_e \rightarrow \bar{\mathbf{v}}_e) = 1 - \sin^2(2\theta_{12}) \sin^2 \frac{\Delta m_{12}^2 L}{4E}$$

History of Neutrino Masses and Mixing

IceCUBE

Current Status of Three-flavor Neutrino Oscillation Model

Neutrino Mixing

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Leading Masses, Mixing, and Oscillations." **Measurements:** → $\sin^2(\theta_{12}) = 0.307 \pm 0.013$ SNO, SuperK ——— → $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$ KamLAND $sin^{2}(\theta_{23}) = 0.534^{+0.021}_{-0.024}$ (Inverted order) $sin^{2}(\theta_{23}) = 0.547^{+0.018}_{-0.024}$ (Normal order) T2K, NOvA, IceCUBE $\Delta m_{32}^2 = (-2.519 \pm 0.033) \times 10^{-3} \text{ eV}^2$ (Inverted order) Daya Bay, IceCUBE, $\Delta m_{32}^{2^2} = (2.437 \pm 0.033) \times 10^{-3} \text{ eV}^2$ (Normal order) T2K, NOvA → $\sin^2(\hat{\theta}_{13}) = (2.20 \pm 0.07) \times 10^{-2}$ Daya Bay - \rightarrow δ , *CP* violating phase = 1.23 \pm 0.21 π rad (S = 1.3) T2K, NOvA —

Neutrino Masses and Mixing: Future Experiments

Neutrino Mixing

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Masses, Mixing, and Oscillations." Upcoming $\sin^2(\theta_{12}) = 0.307 \pm 0.013$ **Measurements:** $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$ $\sin^2(\hat{\theta}_{23}) = 0.534^{+0.021}_{-0.024}$ (Inverted order) $\sin^2(\theta_{23}) = 0.547^{+0.018}_{-0.024}$ (Normal order) **Mass Ordering:** $\Delta m_{32}^2 = (-2.519 \pm 0.033) \times 10^{-3} \text{ eV}^2$ (Inverted order) T2K, NOvA, JUNO, T2HK, IceCUBE upgrade, DUNE $\Delta m_{32}^2 = (2.437 \pm 0.033) \times 10^{-3} \text{ eV}^2$ (Normal order) $\sin^2(\tilde{\theta}_{13}) = (2.20 \pm 0.07) \times 10^{-2}$ Search for CP-Violation: $\Rightarrow \delta$, *CP* violating phase = 1.23 \pm 0.21 π rad (S = 1.3) T2K, NOvA, T2HK, DUNE -

E. Drakapoulou, BNL Forum 2023

ARCA blocks

ORCA block

Buov

Neutrino Masses and Mixing: Future Experiments

KM3Net-ORCA:

- 7 Mton water Cherenkov detector in the Mediterranean Sea
- ORCA: Dense distribution of photodetectors for ~GeV threshold
- Atmospheric neutrinos with few-GeV energy particularly sensitive to neutrino mass ordering due to matter-enhanced oscillation in earth.

Status:

- 18 (of 155) DUs installed, and initial measurement of atmospheric neutrino disappearance released

Instruments 2022, 6(3), 26

Neutrino Masses and Mixing: Future Experiments

JUNO:

- Measure reactor electron antineutrino disappearance at 52.5 km

- Detect via inverse-beta decay in 20 kt liquid scintillator detector

Status:

- Under construction, aiming for first data in 2024

Neutrino Masses and Mixing: Future Experiments

Hyper-Kamiokande:

- 258 kton Water Cherenkov detector
- Upgraded off-axis neutrino beam from J-PARC, ~0.6 GeV, 295 km away
- Status: Excavation in progress, aiming for start of operations in 2027

N. McCauley, NuFact 2023

Neutrino Masses and Mixing: Future Experiments

Deep Underground Neutrino Experiment (DUNE)

- Multiple 10 kton Liquid Argon Time-Projection Chambers at SURF
- New on-axis neutrino beam from FNAL, ~1-5 GeV, 1300 km
- Physics goals:

Mass ordering, CP-Violation, Precision Oscillation Supernova Neutrinos, Nucleon Decay, BSM Searches

- Status: Far site excavation nearly complete,

Interlude: Development of 3D LArTPC

3D Pixel LArTPC (LArPix):

- True 3D imaging
- Continuous readout, ~100% uptime
- Intrinsically sparse data, low data volume

Recent Progress:

- Operation of four ton-scale 100k-pixel prototype LArTPCs

Actual raw cosmic ray data imaged in ton-scale prototype pixel TPC

Next Steps:

- Currently installing a 300k-pixel LArTPC in NuMI neutrino beam
- Use to characterize neutrino-nuclear interactions in the few-GeV energy regime, relevant for DUNE program
- Serve as prototype for the DUNE Liquid Argon Near Detector (ND-LAr)

Pursuing Neutrino Mass

Neutrino Masses and Mixing: Direct Mass Measurements

Kinematic Measurement:

- Neutrino mass distorts the spectrum of beta-decay electrons
- Small neutrino mass only visible in very tail of decay spectrum

Effective Neutrino Mass: $m_eta = \sqrt{\sum_i |U_{ei}^2| m_i^2}$

- ³H (beta-decay), ¹⁶³Ho (EC) are preferred isotopes, due to lower half-life and decay endpoint.
- So far, experiments have placed limits at the < 1 eV scale, approaching oscillation measurement mass regime.

CERN Courier, Jan. 2020

S. Mertens, TAUP 2023

Neutrino Masses and Mixing: Direct Mass Measurements

Spectrometer:

KATRIN: Electrostatic filtering spectrometer measuring ³H decay

0.5 Nature Phys. 18 (2022) $m_{ m v}^2$ (eV²) 0.0 -0.5-1.0Phys. Rev. Lett. 123 (2019) 1.6 upper limit (90% CL) forecast (90% CL) ο 0.8 *m*_v (eV) first 5 campaigns 0.4 KATRIN final 0.2 100 200 1000 Ω Measurement days

Microcalorimeters:

 HOLMES: ¹⁶³Ho embedded in Au absorber, coupled to TES
 ECHo: ¹⁶³Ho embedded in magnetic micro-calorimeter (MMC)

Eur. Phys. J. Special Topics 226, 1623–1694 (2017)

Cyclotron Resonance Spectrometer: PRD 80, 051301 (2009)

Cyclotron emission frequency sensitive to electron energy

Project-8: *Y.H. Sun, BNL Forum 2023* ³H in atom trap resonant cavity **QTNM:**

³H storage ring

Neutrino Masses and Mixing: Cosmological Probes

Large Scale Structure:

- Free-streaming of massive neutrinos suppresses clustering in early universe
- Measurable using CMB, Galaxy surveys, Weak Lensing, and Lyman-alpha forest
- Sensitive to the sum of neutrino masses

Current combined limit: Sum(m_{nu}) < 0.12 eV

Next-generation experiments (CMB-S4 and Spectroscopic surveys) aim for a resolution of 0.01 eV

Implications of Neutrino Masses and Mixing

Lepton flavor is not a conserved quantity.

Neutrinos have mass.

- Mass is at least 6 orders of magnitude smaller than known particles.
- Currently unknown how to correctly incorporate neutrino mass into the Standard Model.

Dirac Mass

Majorana Mass

-
$$m\psi_R\psi_L$$
 - $m\psi_R\psi_L$

-
$$m_L \chi_L \chi_L$$
 - $m_R \chi_R \chi_R$

- Dirac mass:

Similar to other known particles, but difficult to motivate small mass

- Majorana mass:

Possible for neutral neutrino, and seesaw mechanism can generate small mass, but violates lepton number conservation

The Nature of Neutrino Mass

Neutrino mass and Lepton Number Violation:

- Neutrinoless double beta decay: Currently the most sensitive probe of possible LNV
- Experiments aim to measure/limit half-life of isotope decay
- In the simplest SM extention:
 e.g. Exchange of a light Majorana neutrino
 - $\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}g_A^4 \mathcal{M}^2 |f|^2$ $f| = \frac{m_{\beta\beta}}{m_e} = \frac{\left|\sum_{i=1}^3 U_{ei}^2 m_i\right|}{m_e}$

Lower limit on ${\cal T}_{1/2}^{0\nu}$ [yr]

re, Yale

-> Sensitive to coherent sum of neutrino masses

The Nature of Neutrino Mass: Techniques

Topology: Energy: Signal **Tracking detectors** Pixel detectors **HPGe detectors** like (SuperNEMO) (SELENA, ...) (MJD, ...) Bkg. like Signal like Bkg. like Gas Xe TPCs **Bolometers** (NEXT, PANDA-X-III,...) (CUORE/CUPID, AMoRE) Liquid Xe TPCs HPGe + LAr veto (EXO-200, nEXO, XLZD,...) (Gerda, LEGEND) Liquid scintillator ⁷⁶Ge (KamLAND-Zen, SNO+, THEIA,...) 82Se 100Mo 130**Te** Active shielding: 136Xe Distance from nearest detector Signal Bkg. surface like like D. Moore, TAUP 2023

Rich experimental field leveraging a wide range of detection technologies.

The Nature of Neutrino Mass: Current Limits

GERDA ⁷⁶Ge *PRL 125, 252502 (2020)*

Δ

						Buffer oil
Isotope	Technique	$T_{1/2}^{0 u}$	m_{etaeta} (eV)	Year Published]	scintillator
⁴⁸ Ca	CaF_2 scint. crystals	$> 5.8 \times 10^{22} \text{ y}$	<3.5-22	2008 [65]		Xe-LS
76 Ge	76 Ge detectors	$> 1.8 \times 10^{26} \text{ y}$	< 0.079-0.180	2020 [12]		
82 Se	Zn ⁸² Se bolometers	$> 4.6 \times 10^{24} \text{ y}$	< 0.263-0.545	2022 [19]		
96 Zr	Thin metal foil within TPC	$> 9.2 \times 10^{21} \text{ y}$	<3.9 - 19.5	2009 [66]		Inner balloon
100 Mo	${\rm Li_2}^{100}{ m MoO_4}$ bolometers	$ >1.8\times10^{24}$ y	<0.28-0.49	2022 [18]		Water Outer balloon
116 Cd	116 CdWO ₄ scint. crystals	$> 2.2 \times 10^{23} \text{ y}$	<1.0-1.7	2018 [67]		17 inch PMT × 1325
¹²⁸ Te	TeO_2 bolometers	$> 3.6 \times 10^{24} \text{ y}$	<1.5-4.0	2022 [68]		+ 20 inch PMT × 554
¹³⁰ Te	TeO_2 bolometers	$ > 2.2 \times 10^{25} \text{ y}$	< 0.090-0.305	2022 [69]		Kaml AND-7en 800
¹³⁶ Xe	Liquid Xe scintillators	$ > 2.3 \times 10^{26} \text{ y}$	< 0.036-0.156	2022 [13]	- Contin	13620
150Nd	Thin metal foil within TPC	$ >2 \times 10^{22} \text{ y}$	1.6-5.3	2016 [70]		AC .
arXiv:2212.11099						JPCS 1468 (2020) 012142
¹³⁰ le						
Nature 604 53 (2)				e 604 53 (2022)	ACCESSION OF THE OWNER OWNER OF THE OWNER	

The Nature of Neutrino Mass: Current and Future Reach

Beyond Three-flavor Mixing

Beyond Three Flavor Mixing

Beyond Three Flavors: Accelerator and Radiochemical Experiments

Short-baseline Accelerator Experiments

- LSND and MiniBooNE observed an excess of electron neutrino-like events from muon neutrino sources
- Data is in strong tension with other oscillation results
- Recent MicroBooNE measurement does not observe any excess
- Expect more results soon from the Short-Baseline Neutrino Program (SBN)

Radiochemical Experiments

- Look for the conversion of ⁷¹Ga to ⁷¹Ge when exposed to an intense neutrino source (e.g. ⁵¹Cr, ³⁷Ar)
- Less ⁷¹Ge measured than predicted

Beyond Three Flavors: Reactor Antineutrinos

Discrepancy between observed vs predicted antineutrino rate

- Considered potential evidence for a light (eV-scale) sterile neutrino
- Consistent across multiple experiments
- Model prediction was semi-empirical; based on fission electron spectra
- Predicted energy spectrum also inconsistent with data (5 MeV shoulder)

Recent Progress

- Variation of rate vs. reactor fuel composition inconsistent with semi-empirical model
- New models based on summation of nuclear decay data are consistent

Sterile Neutrinos: Current and Future Sensitivities

Neutrino Experiments: Summary

Neutrino Masses and Mixing:

- Measurements sensitive to neutrino mass differences <10⁻² eV² present a remarkably consistent picture of three-flavor neutrino mixing
- Upcoming measurements from KM3NeT-ORCA, JUNO, Hyper-K, and DUNE will pursue the neutrino mass ordering and CP-violation, while also providing a new level of precision of the three-flavor model

Pursuing Neutrino Mass

- Kinematic and cosmic probes of neutrino mass are entering the regime suggested by oscillation measurements
- Neutrino oscillation proves neutrinos have mass, but we do not know the correct manner for inclusion in a new Standard Model
- Searches for neutrinoless double beta decay may provide direction, as well as determine if neutrinos violate lepton number conservation

Beyond Three Flavors

- Oscillation searches at O(1) eV² present an inconsistent picture, but current and upcoming accelerator and reactor neutrino experiments are providing clearer answers.

