Searching for New Physics in rare $\Lambda_{\rm b}^0$ decays at LHCb

Debashis Sahoo

(on behalf of the LHCb collaboration)

Introduction

• $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$:

- Rare FCNC decays with ${\sf BF} < 10^{-6}$
- ${\: \bullet \:}$ Forbidden at tree level \rightarrow loop factor
- Suppressed by CKM elements
- Several Observables:
 - Branching fractions and CPV
 - Angular analyses
 - Photon polarization

• *b*-hadrons @LHCb

- Unique access to all *b*-hadron species
- Production ratio of $B_{u,d}$: Λ_b^0 : $B_s^0 \approx 4:2:1$

• Λ_b^0 baryon

- Spin-1/2 particle. Complementary to $B_{u,d,s}$.
- ud diquark behaves as a "spectator".
- Richer angular structure than *b*-meson decays.
- High sensitivity to NP.

The LHCb Detector (Run 1 and 2)

- Single arm forward (2 < η < 5) spectrometer primed for *b* and *c*-hadrons
- Vertex locator (VeLo):
 - decay time resolution: 45 fs
 - IP resolution: 20 µm
- Dipole magnet:
 - Bending power: 4 Tm
- Tracking stations, TT & OT
 - Momentum resolution $\Delta p/p = 0.5\% 1.0\%$ (5 GeV-100 GeV)

RICH1 & RICH2

• K/ π /p separation, $\epsilon(K \rightarrow K) \sim 95\%$, Mis-ID $\epsilon(\pi \rightarrow K) \sim 5\%$

- Calorimeters (ECAL & HCAL): e/γ ID, $\sigma_E/E = 10\%/\sqrt{E(\text{GeV})} \bigoplus 1\%$
- Muon stations: μ identification $\epsilon(\mu o \mu) \sim$ 97%, mis-ID $\epsilon(\pi o \mu) \sim 1-3\%$

First observation: $\Lambda_b^0 \to p K^- \mu^+ \mu^-$ and $\Lambda_b^0 \to p \pi^- \mu^+ \mu^-$

• Run 1-only first observations including CS $b \rightarrow d$ mode.

[JHEP 06 (2017) 108]

[JHEP 04 (2017) 029]

• CP asymmetries and triple product asymmetries are also checked for CF $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$. No CPV found.

Debashis Sahoo (ELTE)

Rare $\Lambda_{\rm b}^0$ decays @LHCb

The complicated $\Lambda^* \to pK^-$ and $N^* \to p\pi^-$ spectra

• Major challenge: broad overlapping resonances. Run 1 spectra:

[PRL 117, 082003 (2016)]

• Interpretation needs FFs (hard!). Quark model $\Lambda_b^0 \to \Lambda^*$ FFs from Mott-Roberts. Lattice FFs only for the narrow $\Lambda(1520)$ state.

$\Lambda^0_b o \Lambda(1520) \mu^+ \mu^-$ differential BFs

• Full Run 1+2 (9 fb⁻¹) study of the narrow ($\Gamma_0 \sim 16$ MeV) $J^P = (3/2)^-$ state, $\Lambda(1520)$

- $\Lambda_b^0 \to p K^- J/\psi$ as normalization mode.
- $\bullet\,$ Signal yield for the rare mode $= 2250\pm57$

$\Lambda_b^0 \rightarrow \Lambda(1520) \mu^+ \mu^-$ differential BFs (cntd.)

 Extraction of Λ(1520) from other states by fitting m(pK⁻) using background subtracted data. Interferences between Λ^{*} states found to be small and included in systematics.

- Large differences with predictions at low and mid q². Need better theory understanding of the FFs.
- Reasonably consistent with lattice at high q^2 .

$\Lambda_{\rm b}^{0} \rightarrow \Lambda \mu^{+} \mu^{-}$ differential BFs

- Study of decay with ground state $\Lambda(1115)$ in final state using Run 1 (3.0 fb⁻¹) data.
- Compared to excited Λ^* that decay strongly, $\Lambda(1115)$ is long-lived and more difficult to reconstruct.

• BFs somewhat lower than theory in the low- q^2 region (as in other $b \rightarrow s\mu^+\mu^-$ modes), but consistent with SM.

Angular moments analysis of $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$

[JHEP 09 (2018) 146]

• Uses 5 fb⁻¹ data in $q^2 \in [15, 20]$ GeV².

• 34 q^2 -dependent angular moments,

$$\begin{split} \frac{d^5\Gamma}{d\vec{\Omega}} &= \frac{3}{32\pi^2} \sum_{i}^{34} \frac{K_i}{K_i} f_i(\vec{\Omega}) , \\ \text{where } \vec{\Omega} &\equiv \left(\cos\theta, \cos\theta_I, \phi_I, \cos\theta_b, \phi_b\right) \text{ for } \\ \text{polarized } \Lambda_{\rm b}^0 . \end{split}$$

• K_i determination by moments analysis

Angular moments analysis of $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$ (cntd.)

• The angular moments model reproduces the 1-d distributions:

- At LHC, $\Lambda_{\rm b}^0$ almost unpolarized \Rightarrow 10 K_i moments only.
- Data shows good consistency with SM predictions (EOS) for the 10 moments.

[JHEP 09 (2018) 146]

Lepton Flavour Universality tests in $\Lambda_b^0 \to p K^- \ell^+ \ell^-$

• First test of LFU in *b*-baryons using 4.7 fb^{-1} data. [JHEP 2020, 40 (2020)]

Debashis Sahoo (ELTE)

Rare $\Lambda_{\rm b}^0$ decays @LHCb

First Observation of $\Lambda^0_b \to \Lambda \gamma$

• Baryonic $b \rightarrow s\gamma$ not observed previously BF < 10⁻³ CDF: [PRD.66.112002]

- While $BF_{SM} \in [0.06, 1] \times 10^{-5}$ [Wang et al., Mannel et al., Gan et al., Faustov et al.]
- Access to photon polarization, thanks to self-analyzing $\Lambda^0 \rightarrow p\pi^-$ weak decay. [Mannel/Recksiegel, Hiller/Kagan]

• Experimentally, very challenging. $A_{\rm b}^0$ vertex reconstruction is not possible.

 Huge combinatorial background mitigated with MVA. Dedicated trigger added in Run2. • Using Run2 2016 dataset (1.7 fb⁻¹), first observation at 5.6 σ [PRL 123, 031801 (2019)]

- Branching fraction: $\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma) = (7.1 \pm 1.5 \text{ (stat)} \pm 0.6 \text{ (syst)} \pm 0.7 \text{ (external)}) \times 10^{-6}$
- In agreement with theoretical prediction

Photon polarization in $\Lambda^0_b \to \Lambda \gamma$

- In SM, photon predominantly LH for *b*-quark decay. γ_{pol} highly sensitive to RH currents from NP. Large effort from various *b*-decays at LHCb.
- $\gamma_{\rm pol}$ measured for the first time in radiative *b*-baryon decays using 6 fb⁻¹ data (Run 2).

- $\frac{d\Gamma}{d\cos(\theta_p)} \propto 1 \alpha_{\gamma} \alpha_{\lambda} \cos(\theta_p)$, where θ_p is the $\Lambda^0 \to p\pi^-$ decay helicity angle.
- Photon polarization, α_{γ} , is measured by fit to $\cos(\theta_p)$.
- $\alpha_{\gamma} = 0.82^{+0.17}_{-0.26}$ (stat.) $^{+0.04}_{-0.13}$ (syst.). Compatible with SM prediction of $\alpha_{\gamma} \approx +1$.

Debashis Sahoo (ELTE)

[PRD 105 (2022) L051104]

Photon polarization in $\Lambda_b^0 \to \Lambda \gamma$ (cntd.)

- Constraints on the Wilson Coefficients of the effective Hamiltonian of the $b\to s\gamma$ transition.
- New constraint on C_7 and C'_7 : breaks 4-fold ambiguity to 2-fold remnant ambiguity:

LHCb upgrade and status of Run 3

- Major upgrade during LS2 ⇒ almost a brand new detector for Run3.
- Fully software trigger and real-time alignment+calibration.
- Commissioning and early measurements campaign ongoing (EMTF).

- Around 150 ${\rm pb}^{-1}$ pp data collected in summer 2023. Various expected peaks seen in EMTF.
- VeLo vacuum incident in January and LHC incident in summer. LHCb running with VeLo partially open. Heavy ion (PbPb) data-taking ongoing.
- Preparing for pp collisions in 2024 with all sub-detectors included.

Debashis Sahoo (ELTE)

October 4, 2023

- FCNC $b \rightarrow \{s, d\}$ decays are powerful tools to hunt NP.
- LHCb has unique access to *b*-baryons, complementary to $B_{u,d,s}$ mesons. Large program, especially with Λ_b^0 rare decays.
- At the moment all seems to be compatible with SM prediction.
- Many Run2 analyses (amplitude analyses, LFUV tests...) in the immediate pipeline. Stay tuned for Run3 as well...

- FCNC $b \rightarrow \{s, d\}$ decays are powerful tools to hunt NP.
- LHCb has unique access to *b*-baryons, complementary to $B_{u,d,s}$ mesons. Large program, especially with Λ_b^0 rare decays.
- At the moment all seems to be compatible with SM prediction.
- Many Run2 analyses (amplitude analyses, LFUV tests...) in the immediate pipeline. Stay tuned for Run3 as well...

THANK YOU!

17 / 17

Backup: Graphical representation of $\bar{\Lambda}^0_{\rm b} \rightarrow \Lambda \mu^+ \mu^-$

 $\hat{y}_{\ell \bar{\ell}}$

 $\hat{z}_{\ell \bar{\ell}}$

 Λ_b^0 rest-frame \hat{x}_{Λ} , $\hat{x}_{\ell\bar{\ell}}$

Backup: Schematic view of $\Lambda_{\rm b}^0 \to \Lambda \gamma$

∃ →

Backup: LHCb upgrades

- Absence of evidence for New Physics implies that it is either very heavy or highly complex
- Flavor physics can probe New Physics before it is observed directly, by looking at indirect effects in already accessible energy scale processes
- Along with other flavor physics aspects, LHCb has a unique chance with $\Lambda^0_{
 m b}$ decays.
- For all these efforts, we need huge statistics (high L), low systematics (very well-characterized detectors), and precise SM predictions.
- Upgrade 1: $L_{peak} = 2 \times 10^{33} cm^{-2} s^{-1}$ $L_{int} = 50 \text{ fb}^{-1} (Run \ 3 \ \& 4)$
- Upgrade 2: $L_{peak} = 1.5 \times 10^{34} cm^{-2} s^{-1}$ $L_{int} = 300 \text{ fb}^{-1} (\text{Run } 5 \& 6)$

Backup: Upgrade II

- After Expression of Interest (2017) & Physics Case (2018), Framework TDR approved in March 2022
- We need to complement it with more detailed plans / scoping scenarios, manpower, and funds, before moving to sub-detector TDRs
- Target: produce the Scoping Document within 2024

4 1 1 1 4 1 1