Measurement of the atmospheric muon neutrino flux with KM3NeT/ORCA6

Brookhaven Forum 2023 Advancing Searches for New Physics

Dimitris Stavropoulos*, PhD candidate National Center for Scientific Reasearch "Demokritos" National Technical University of Athens KM3Net KM3Net

*dstavropoulos@inp.demokritos.gr

Work carried out in the context of the program "Intelligent, Specialized Environmental Observatory in
Messinia" (ISEO), funded by the Operational Program "Peloponnesos" 2014-2020, of NSRF (2014-2020).

Introduction

- Atmospheric neutrinos; why are they interesting?
- KM3NeT/ORCA detector
- ORCA6 configuration; data and MC simulation
- Atmospheric neutrino event selection for ORCA6
- Unfolding of the energy spectrum
- Flux measurement

Atmospheric neutrinos

Produced when cosmic rays interact with the Earth's atmosphere, from secondary particle decays:

K, π mesons \longrightarrow Conventional Flux

D mesons ----- Prompt Flux

Wide energy range, from ~100 MeV to PeV scale

Why are they interesting?

- Testing of the Cosmic Ray models
- Lower part of energy spectrum suitable for studying phenomena associated with neutrino oscillations
- Irreducible background in neutrino astronomy

information between 1-100 GeV

The KM3NeT/ORCA detector

Main goal: Determine the neutrino mass hierarchy

But also BSM, dark matter and other studies...

KM3NeT/ORCA site ~40 km offshore Toulon at a ~ 2450 m sea depth.

ORCA is currently operating with 18 Detection Units!

¹ Building Block = 115 DUs

KM3NeT/ORCA6 configuration: Data & MC simulation

Data collected from February 2020 to November 2021 with 6-DUs (ORCA6): livetime equal to 555.7 days.

~84% time efficiency with respect to the ORCA6 total running period!

MC simulation:

• Atmospheric muons simulated with the MUPAGE software

• Atmospheric neutrinos, gSeaGen: $\begin{bmatrix} v_e + \bar{v}_e \ \text{CC} & :1 \ \text{GeV} < \text{E} < 10 \ \text{TeV} \\ v_\mu + \bar{v}_\mu \ \text{CC} & :1 \ \text{GeV} < \text{E} < 10 \ \text{TeV} \\ v_\tau + \bar{v}_\tau \ \text{CC} & :3 \ \text{GeV} < \text{E} < 500 \ \text{GeV} \\ v + \bar{v} \ \text{NC} & :1 \ \text{GeV} < \text{E} < 10 \ \text{TeV} \\ \end{bmatrix}$

Atmospheric neutrino events weighted using the <u>HKKM14</u> <u>conventional flux model</u> for the Frejus location and oscillation probabilities (<u>NuFIT v5.2</u>) assuming Normal Hierarchy ORCA6 DU footprints:

Atmospheric neutrino event selection

- Simple precuts to reject the contribution of random noise events
- Selection of events reconstructed as upward-going
- Application of an Adaptive BDT classifier (*TMVA*):

Event variables created and used as BDT features, based on:

- Signal-like hits
- Event topology
- Reconstruction quality

BDT score cut at 0.56:

Data: 4197 events Atm neutrinos: 4196.1 events Atm muons: 28.1 events

~7.5 events/day

~0.6% muon contamination

~25.0% neutrino efficiency with respect to the total number of neutrino events reconstructed as upgoing

Event selection: reconstructed direction and position

The distributions of the reconstructed cosine zenith and the reconstructed vertex position (radial position) illustrate good data/MC agreement

Atm neutrinos: 4196.1 events Atm muons: 28.1 events

Unfolding - Reconstructed energy

Unfolding: Deconvolution of a *true* spectrum from the experimentally measured one

Unfolding of the $\nu_{\mu} + \bar{\nu}_{\mu} CC$ energy spectrum from the reconstructed energy distribution

The TUnfold software used. Subtraction of background:

• Remaining atm. Muons

• Shower-like events $\begin{array}{c} \nu_e + \bar{\nu}_e \ \mathrm{CC} \\ \nu_\tau + \bar{\nu}_\tau \ \mathrm{CC} \\ \nu + \bar{\nu} \ \mathrm{NC} \end{array}$

• To account for the limitted instrumented volume: $v_{\mu} + \bar{v_{\mu}} CC$ with $E_{true} > 100 \text{ GeV}$

Reconstructed energy for the event selection:

Unfolding – Define binning and response matrix

The choice of binning for the true and reco phase spaces is important for the unfolding

Study on MC simulated events:

- <u>Purity of the energy bins</u>: Percentage of events with reconstructed energy within the true energy bin
- <u>MC consistency check</u>: Apply the unfolding using the MC reco energy to ensure consistency
- <u>Robustness check</u>: "toy" unfolding experiments (1k) performed using pseudo-data

 $Log(E_{reco}/GeV)$: {0.0, 0.1, 0.2, 0.3, ..., 2.5, 2.6}

 $Log(E_{true}/GeV)$: {0.0, 0.8, 1.3, 1.8, 2.0}

Unfolding – Result

Dimitris Stavropoulos – Brookhaven Forum 2023

Procedure to extract flux values

±21%

±24%

 $1.57 \cdot 10^{-3}$

 $8.46 \cdot 10^{-4}$

extracted by unfolding

Dimitris Stavropoulos – Brookhaven Forum 2023

1.45

1.88

1.3-1.8

1.8-2.0

Measured flux

Dimitris Stavropoulos – Brookhaven Forum 2023

Outlook

- KM3NeT/ORCA is able to measure the atmospheric neutrino flux even with a preliminary detector configuration (ORCA6)
- Results and energy range of the measurement are to be improved in future due to the increase of instrumented volume

ORCA is currently collecting data with 18 DUs!

• An estimation of systematic uncertainties is in progress

Thank you for your attention!

Work carried out in the context of the program "Intelligent, Specialized Environmental Observatory in Messinia" (ISEO), funded by the Operational Program "Peloponnesos" 2014-2020, of NSRF (2014-2020).