

The Belle II Upgrade Program

C. Marinas Instituto de Física Corpuscular (IFIC) CSIC-UV

Belle II Collaboration

Belle II

cmarinas@ific.uv.es

The Three Frontiers

• The Intensity Frontier: Search for rare new phenomena using *medium-energy high-luminosity* machines

Super Flavor Factory

- Search for physics phenomena beyond SM in B, D and τ decays through precision measurements of the CKM sector and studies of rare or forbidden processes
- Many potential NP sources:
 - Flavor changing neutral currents
 - Lepton flavor violating decays
 - $B \rightarrow \tau$ tree level new physics
 - New sources of CPV

 High luminosity accelerator SuperKEKB
 High-resolution and large-coverage detector Belle II

Observable	SM theory	Current measurement (early 2013)	Belle II $^{\pm}$ (50 ab ⁻¹)	
$S(B \rightarrow \phi K^0)$	0.68	0.56 ± 0.17	± 0.018	
$S(B \rightarrow \eta' K^0)$	0.68	0.59 ± 0.07	± 0.011	
α from $B \to \pi \pi, \rho \rho$		$\pm 5.4^{\circ}$	±1°	
γ from $B \rightarrow DK$		±11°	$\pm 1.5^{\circ}$	
$S(B \rightarrow K_S \pi^0 \gamma)$	< 0.05	-0.15 ± 0.20	± 0.035	
$S(B \rightarrow \rho \gamma)$	< 0.05	-0.83 ± 0.65	± 0.07	
$A_{\rm CP}(B \to X_{s+d} \gamma)$	< 0.005	0.06 ± 0.06	± 0.005	
A^d_{SL}	$-5 imes 10^{-4}$	-0.0049 ± 0.0038	± 0.001	
$\mathcal{B}(B \rightarrow \tau \nu)$	1.1×10^{-4}	$(1.64 \pm 0.34) \times 10^{-4}$	±3%	
$\mathcal{B}(B \rightarrow \mu \nu)$	4.7×10^{-7}	$< 1.0 \times 10^{-6}$	$\gg 5\sigma$	
$\mathcal{B}(B \rightarrow X_s \gamma)$	$3.15 imes 10^{-4}$	$(3.55\pm 0.26)\times 10^{-4}$	±6%	
$\mathcal{B}(B \rightarrow K^{(*)}\nu\overline{\nu})$	$3.6 imes 10^{-6}$	$<1.3\times10^{-5}$	$\pm 30\%$	
$\mathcal{B}(B \rightarrow X_s \ell^+ \ell^-)~(1 < q^2 < 6{\rm GeV^2})$	$1.6 imes 10^{-6}$	$(4.5 \pm 1.0) \times 10^{-6}$	$\pm 0.10 \times 10^{-6}$	
$A_{\rm FB}(B^0 \to K^{*0} \ell^+ \ell^-)$ zero crossing	7%	18%	5%	
$ V_{ub} $ from $B \to \pi \ell^+ \nu~(q^2 > 16{\rm GeV^2})$	9% ightarrow 2%	11%	2.1%	

- SuperKEKB: Asymmetric energy e^+e^- collider $E_{cm} = m(\Upsilon(4S)) = 10.58 \text{ GeV}$
- Peak luminosity: $\mathcal{L} = 6 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ (x30 than KEKB) Beam size reduction. Higher current (x2 higher).

SuperKEKB and the Belle II Experiment

The SuperKEKB Accelerator

Linac

Mt. Tsukuba

SuperKEKB ring (HER+LER)

Belle II detector

Tsukuba Tokyo

KEK - Tsukuba

The SuperKEKB – Belle II Roadmap

- Phase 1 (2016): No detector, no collision. Machine startup and baking
- Phase 2 (2018): Pilot run. First collisions with complete accelerator Only partial vertex detector and background monitors (BEAST)
- Phase 3 (2019): Physics runs with complete detector Run 1 (2019 - 2022): Only partial PXD → 1st Physics paper in 2020 Run 2 (2024 -): Full detector

Achievements:

- $L_{peak} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} (\text{x2 KEKB})$
- L_{integrated} = 430 fb⁻¹ (~BaBar)
- Data taking efficiency >90%
- Path identified to reach 2x10³⁵ cm⁻²s⁻¹
- Ultimate goal: 50 ab⁻¹ by operating at 6x10³⁵ cm⁻²s⁻¹

Advanced Technologies in Belle II

• Pixelated photosensors

MCP-PMTs in imaging time-of-propagation detector (TOP) HAPDs in aerogel ring-imaging Cherenkov detector (ARICH) MPPCs (aka SiPMs) in KL-muon detector (KLM)

- Semiconductor technologies DEPFET in the pixel detector (PXD)
- Custom front-end ASICs for waveform sampling with precise timing APV25 (adapted from CMS) in silicon-strip vertex detector (SVD) DCD, DHP, Switcher in PXD TARGETX in KLM IRSX in TOP
- High-performance data-acquisition system
 High-throughput network switches to aggregate event data
 Large computer farm for high-level software trigger

Belle II Upgrade Program

SuperKEKB **peak** & **integrated** luminosity vs time

LS1 (2022): Actual detector consolidation LS2 (2027): IR and detector upgrades

\rightarrow Currently: CDR preparation

Path to the future:

1) Improve machine performance and stability Beam blowup, lifetime, injection power, beam losses

2) Reduce detector backgrounds Single beam, injection and luminosity backgrounds

3) LS1 Detector consolidation toward 2x10³⁵ cm⁻²s⁻¹ Installation of more robust components

4) LS2 Detector upgrade toward 6x10³⁵ cm⁻²s⁻¹ Including a redesign of the interaction region

→ More performant detector and robust against machineinduced backgrounds

- RF cavity replacement, faster kicker magnets at injector

- DAQ system upgrade PCIe40

SuperKEKB Upgrades – LS2

Goal: Higher *L* with lower β^* and higher currents

- Limit beam-beam effects, preserve beam lifetime
- Reposition final-focus (QC) magnets closer to IP
- New design for final-focus magnets
- Additional compensating solenoid inside QC magnets
- Feasibility studies ongoing

Belle II Upgrades – LS2 and Beyond

Requirements for VXD Upgrade in LS2

Upgrade motivation:

- Cope with larger background activity
- Improve momentum and impact parameter resolution in low p_T region
- Simplify tracking chain with all layers involved
- Contribution to Level 1 trigger
- Operation without data reduction

Key sensor specifications:

- Pixel pitch 30-40 μm
- Integration time ≤ 100 ns
- Power dissipation $\leq 200 \text{ mW/cm}^2$

Improve physics reach per ab⁻¹

Radius range	14 – 135 mm				
Tracking & V	ertexing performance				
Single point resolution	< 15 µm				
Material budget	0.2% X _o / 0.7% X _o inner- / outer- layer				
Robustness against high radiation environment (innermost layer)					
Hit rate	~ 120 MHz/cm ²				
Total ionizing dose	~ 10 Mrad/year				
NIEL fluence	~ 5e13 n _{eq} /cm²/year				

Vertexing: All-layer DMAPS Pixel Detector (VTX)

Target: Belle II LS2 Upgrade

- 5 straight layers barrel, using CMOS pixel sensors
- Low material : 0.1% X₀ (L1+L2) 0.4% (L3) 0.8% X₀ (L4+L5)
- Moderate pixel pitch ~ $30 \,\mu m^2$
- Fast integration time 50-100 ns
- iVTX: innermost 2 layers, self-supported, air cooled
- oVTX: 3 outer layers, CF structure, water cooled
- Overall service reduction and operation simplification

Tracking: CDC Front-End Electronics

Better tracking performance

- Reduce cross-talk, power consumption and increase output bandwidth
- Improve radiation tolerance

Achieved with new ASICs, new FPGA, optical modules:

- ASIC chips to measure signal timing and digitize waveform
- New FPGA for online data processing for the trigger and data acquisition systems
- QSFP for data transfer to the trigger and DAQ

PID: Time Of Propagation Counter

• Performance improvements:

Better particle-ID performance Feature extraction inside ASIC Reduced power consumption

• Technology implementation in LS2:

Lifetime-extended ALD-PMTs with better radiation tolerance Redesign front-end boards (ASoC) with Gbps to FPGA Lower power budget and more compact design

Beyond LS2: R&D for SiPM photosensors

$K_{\rm L}$ and Muon

- Replace remaining RPCs in barrel with scintillator strips
- Re-design electronics layout with feature-extraction ASIC inside panel, only digital I/O (optical)
- High-resolution timing for K_L momentum via TOF Solid scintillator with SiPMs

		UT generation	UT3	UT4	UT5
		Main FPGA (Xilinx)	Virtex6	Virtex Ultrascale	Varsal
	Irigger		XC6VHX380-565	XCVU080-190	
	116601	Sub FPGA (Xilinx)		Artex7	Artex7, Zynq
		# Logic gate	500k	2000k	8000k
		Optical transmission rate	8 Gbps	25 Gbps	58 Gbps
		RAM		DDR4	DDR4, UltraRAM
•	More powerful hardware UT4 and UT5 trigger boards	# UT boards	30	30	10
		Cost per a board (k\$)	15	30	50
		Time schedule	2014-	2019-2026	2024-2032

- Avoid merger boards, more bandwidth
 - Using all CDC TDC and ADC information → Vertex resolution improved x2 and 50% trigger rate reduction
- Keep high-efficiency on hadronic events and improve on low-multiplicity

Component	Feature	Improvement	Time	$\#\mathrm{UT}$
CDC cluster finder	transmit TDC and ADC from all wires with the new CDC front end	beamBG rejection	2026	10
CDC 2Dtrack finder	use full wire hit patterns inside clustered hit	increase occupancy limit	2022	4
CDC 3Dtrack finder	add stereo wires to track finding	enlarge θ angle acceptance	2022	4
CDC 3Dtrack fitter (1)	increase the number of wires for neural net training	beamBG rejection	2025	4
CDC 3Dtrack fitter (2)	improve fitting algorithm with quantum annealing method	beamBG rejection	2025	4
Displaced vertex finder	find track outside IP originated from long loved particle	LLP search	2025	1
ECL waveform fitter	improve crystal waveform fitter to get energy and timing	resolution	2026	1000
ECL cluster finder	improve clustering algorithm with higher BG condition	beamBG rejection	2026	1
KLM track finder	improve track finder with 2D information of hitting layers	beamBG rejection	2024	_
VXD trigger	add VXD to TRG system with new detector and front end	BG rejection	2032	
GRL event identification	implement neural net based event identification algorithm	signal efficiency	2025	1
GDL injection veto	improve algorithm to veto beam injection BG	DAQ efficiency	2024	_

- Belle II physics goals is steering a rich instrumental program
- The detector operates efficiently at peak luminosities just below 10³⁵ cm⁻²s⁻¹
- LS1 (2023): Detector consolidation for entering $L_{inst} = 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ regime in the next years
- LS2 (2027): Introducing new technologies for running safely at 6x10³⁵ cm⁻²s⁻¹ with enhanced performance
 - More robustness against backgrounds and radiation damage
 - Better physics performance
 - Readiness for accelerator's redesign of interaction region
- Conceptual Design Report for medium-term detector upgrade \rightarrow Fall 2023

The transition to a construction project is expected soon

THANK YOU

The Belle II Collaboration

- 27 countries
- 132 institutions
- 1175 members

Small Electrode Sensor Design DMAPS

Monolithic detector: Combine sensor and readout on the same wafer

Electronics outside the collection well Small fill factor

- Very small sensor capacitance
- Low noise and power

TowerJazz 180 nm CIS

- Deep pwell allows for full CMOS in pixel
- High resistivity epi-layer 1-8 kOhm.cm
 Epi thickness 18-40 μm
- 3 nm gate oxide for good TID
- Modified process: Additional planar n-type implant Full depleted volume Fast charge collection
- Derived from LHC developments

OBELIX: Growing the TJ-Monopix Family

OBELIX – Design

											(Ana	log)
							Pixel Matrix					
	[DA	C EoC & Buffer					
gulator		Re	gulato Ctrl	r	IDAC	VDAC	Monitoring ADC	Tempe Ser	erature Isor		Power Rese	On t
I/O Pads & Reg	F	Peripho TRU (1 TRG0 EOC0 S0	ery (dig Frigger (Trigg EOC1 S0 S S	gital) Unit) er Gro EOC2 s0 1 2	up) EOC3 so				TRG1 EOCO S0	11 (Tri, EOC1 S0 S S	gger G EOC2 S0 1 2	roup) EOC3 S0
		TXU (Transn	nission	Unit)			TTT (Tr	ack Tri	gger Ti	ransmi	ssion)
	[CRU (Contro	ol Unit)			Cloc	k Divid	er, Syr	nchron	ization

- Pixel matrix
 - Extension from TJ-Monopix2
 - Radiation tolerance granted
 - Pitch kept at 33 µm
 - Operation point (I_{bias}) tuning on-going
 - Frequency ~10-20 MHz
 - Time-stamp precision 100 50 ns

• Power pads

- Power regulators
 - Simplified system integration
- But area limited to <150 μm

• Periphery

- New end-of-column + trigger logic adapted to Belle II trigger
- HitOR fast transmission (20 ns)
- Control using RD53 protocol

TJ-Monopix2 Characterization

- TJ-Monopix2 as forerunner of OBELIX
 - 33x33 μ m² pitch, 25 ns integration, 2x2 cm² matrix
 - 7 bit ToT information, 3 bit in-pixel threshold tuning
 - Various sensing volume thickness (CZ-bulk, epi-30 μm)
- Characterisation on-going
 - In-laboratory
 - Threshold / noise
 - ToT calibration
 - In-beam (DESY, 5 GeV electrons)
 - Efficiency ~99%
 - Position resolution ~9 μ m

iVTX Inner Layer Concept

- All-silicon module < 0.15 % X_0
 - 4 contiguous sensors diced as a block from the wafer
 - Redistribution layer for interconnection
 - Heterogeneous thinning for thinness & stiffness
- Prototyping
 - With existing 10 cm² HV-CMOS ladder
 - Planarity demonstration
 - On-going at IZM-Berlin with dummy Si
 - True iVTX geometry \rightarrow Summer 2023
- Simulation on cooling
 - Dry air cooling 15°C
 - Assume 200 mW/cm²

iVTX Ladder Demonstrator

Metal system:

- Resistive heaters: 1.5 um Al (M1)
- 2 RDL metal layers: 3 um Cu (M2, M3)
 - Top metal finish: NiAu (M4) Wirebonding, SMD soldering

Final ladder dimension: 143 x 20.4 mm² Dummy heaters: 30 x 20 mm² Prepared for 1.7 mm mounting hole

Characterization electrical, mechanical and thermal performances of iVTX ladders

iVTX Cooling

Air cooling (10 m/s, 20 degC) seem feasible, but 9 mm tube seems necessary (3 l/s)

First conceptual air injector support

So far, standing single ladders with uniform power consumption.

More realism to be added on the FEM...

 \rightarrow Experience from CLIC wind tunnel:

oVTX Outer Layer Concept

- Long ladders
 - Evolving from ALICE-ITS2
 - Carbon-fiber truss support frame
 - Cold-plate with water coolant
 - Long-flex for power & data

- L3-4, radius 4-9 cm, length < 50 cm
 - Single sensor row, ~0.5 % X_0
- L5, radius 14 cm, length 70 cm
 - Double sensor rows , $\sim 0.8 \% X_0$

• Prototypes for L5 under

- Deformation & vibration
 - Max sagitta ~500 μm
 - First resonance f=250 Hz
- Signal propagation
- Cooling at T_{room} ~24°C
 - Leakless water flow at T_{in} = 10°C
 - Heaters dissipating 200 mW/cm²
 - 22°C < T_{sensors} < 26°C cmarinas@ific.uv.es

oVTX Stave Integration

Studying mechanical properties with realistic models: Tolerable max. deflection of the structure (40 μ m)

Ladder concept compatible with X/X₀ expectations (0.4-0.8%)

Layer 3 R69 Radiation length summary flex from FW and BW side (6 + 6 chips) - 12 chips		Layer 4 R89 Radiation len 2 flex FW and BW side (8 chips	gth summary + 8 chips) - 16	Layer 5 R140 Radiation leng 2 flex FW and BW side (12 + chips	Layer 5 R140 Radiation length summary 2 flex FW and BW side (12 + 12 chips) - 24 chips		
COMPONENT	X/X0 (%)	COMPONENT	X/X0 (%)	COMPONENT	X/X0 (%)		
upport Structure	0,087%	Support Structure	0,086%	Support Structure	0,169%		
old Plate	0,064%	Cold Plate	0,069%	Cold Plate	0,093%		
pes & Coolant	0,048%	Pipes & Coolant	0,048%	Pipes & Coolant	0,153%		
lue	0,022%	Glue	0,021%	Glue	0,127%		
ex (FW + BW)	0,150%	Flex FW + BW	0,161%	Flex FW + BW	0,186%		
hips	0,066%	Chips	0,067%	Chips	0,069%		
rand Total	0,438%	Grand Total	0,454%	Grand Total	0,796%		

oVTX Stave Demonstrator

cmarinas@ific.uv.es

Performance Studies

cmarinas@ific.uv.es

DMAPS for Belle II Beyond LS2

Institut Pluridisciplinaire Hubert CURIEN STRASBOLING

Starting prospective ideas on simulation beyond VTX

Aerogel Ring-Imaging Cerenkov Counter Upgrade

✓ beyond LS2 ...

- R&D for SiPM photosensors or MCP-PMTs / LAPPD
- R&D for compatible readout (custom or FASTiC from LHCb)
- R&D for aerogel upgrade

Electromagnetic Calorimeter Upgrade

Beam Polarization and Chiral Belle

See Snowmass white paper arXiv:2205.12847

Belle II Vertex and Tracker: European Strategic Project

• Belle II upgrade identified as a strategic project on flavor collider experiments

Different environmental constraints	Strategic Projects	Tracking Vertex Detector (VD) Central Tracker (CT)	Timing Layer (TL) + Calorimeter	
	Heavy lon	ALICE-3, EIC	ALICE-3, EIC ALICE-3 (LS4+), EIC DRD	
	Flavour collider	BELLE-3	BELLE-3	22 nd March 2023 CERN
	Lepton collider	Lepton collider ILC, CLIC ILC, CLIC FCCee, Muon Collider FCCee, Muon Collider		D. Contardo
	pp collider	LHCb-2, ATLAS, CMS FCC-hh	LHCb-2, ATLAS, CMS FCC-hh	-

Milestone 1, 2028-2029

Strategic programs ALICE-3, LHCb-2, Belle-3, EIC: VD/CT

Highest position precision at lowest power dissipation up to large wafersize

New groups applying for joining Belle II Vertex Upgrade

European Strategy and Belle II (KEK)

Other essential scientific activities for particle physics

A. The quest for dark matter and the exploration of <u>flavour</u> and fundamental symmetries are crucial components of the search for new physics. This search can be done in many ways, for example through precision measurements of flavour physics and electric or magnetic dipole moments, and searches for axions, dark sector candidates and feebly interacting particles. There are many options to address such physics topics including energy-frontier colliders, accelerator and non-accelerator experiments. A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics Strategy. *Experiments in such diverse areas that offer potential high-impact particle physics programmes at laboratories in Europe should be supported, as well as participation in such experiments in other regions of the world.*

European Strategy recommends participation in flavor experiments outside Europe \rightarrow Belle II

MEXT Report on SuperKEKB/Belle II

Comprehensive Assessment

The SuperKEKB project is very urgent and strategic, and is highly ranked as a plan that can obtain the consensus of the domestic and international research community and the support of society and the public.

Three scientific goals:

- 1. Continuation of operation, performance improvement, and data accumulation
- 2. Maintenance and *improvement of apparatus*
- 3. Experimental data analyses and presentations of scientific outputs
 - SuperKEKB/Belle II promoted as a large scale academic frontier project
 - 10 years plan
 - Long term support from hosting lab >2032