Validating Earth's Matter Effect in Atmospheric Neutrino Oscillations at IceCube-DeepCore

Anuj Kumar Upadhyay

anuju@iopb.res.in & aupadhyay@icecube.wisc.edu

(For the IceCube collaboration)

Aligarh Muslim University, Aligarh, India & Institute of Physics, Bhubaneswar, India Department of Physics and WIPAC, UW Madison, USA

> Brookhaven Forum 2023 Advancing Searches for New Physics (BF2023) October 4 - 6 , 2023

Outline

- Interior of Earth
- Atmospheric Neutrinos
- Earth's Matter Effect in Neutrino Oscillations
- Validating Earth's Matter Effect at IceCube-DeepCore
 - IceCube-DeepCore Detector
 - Expected Sensitivity

The Interior of Earth

 Information about the interior of Earth is obtained from indirect probes using traditional seismic and gravitational studies → Preliminary Reference Earth Model (PREM)

- Broadly classified: two concentric shell the outer one is mantle, and the inner one with a much higher density is core
- Mantle consists of hot rocks of silicate and core is composed of metals like iron and nickel
- Outer core is expected to be liquid (absence of S-waves and decrease in the velocity of P-waves)
- Core-Mantle Boundary (CMB): the largest chemical compositional and density discontinuity within the Earth

Atmospheric Neutrinos

At high (TeV-PeV) energies: Neutrino absorption tomography

• Produced a few km above the Earth's surface by primary cosmic ray interactions

• Baseline: ~20 km to 12760 km

• Wide energy range: few MeV to more than TeV

Neutrino Oscillations

- Neutrino changes its flavor while propagating
- Quantum mechanical phenomenon
- Mixing described by PMNS matrix (U)

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
Atmospheric Reactor Solar

where, \textbf{c}_{ij} = $cos\theta_{ij}$ and \textbf{s}_{ij} = $sin\theta_{ij}$

Probability of oscillation of flavor α to β :

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| U_{\beta 1} U_{\alpha 1}^{*} + U_{\beta 2} U_{\alpha 2}^{*} e^{-i2\alpha\Delta} + U_{\beta 3} U_{\alpha 3}^{*} e^{-i2\Delta} \right|^{2}$$

where, $\Delta = \frac{\Delta m_{31}^{2} L_{\nu}}{4E_{\nu}}$, $\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}$, and $\alpha = \frac{\Delta m_{2}^{2}}{\Delta m_{3}^{2}}$

In the two-flavor approximations:

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2 \left(2\theta_{23}\right) \sin^2 \left(1.27 \frac{\Delta m_{32}^2 L}{E}\right)$$

Anuj Kumar Upadhyay

Validating Earth's Matter Effect

Brookhaven Forum 2023

<u>NPB 538 (1999) 25</u>): 2 GeV < E_. < 6 GeV

04/10/2023

Neutrinos feel a charged-current potential V_{cc} during coherent forward scattering with ambient electrons inside Earth

$$V_{\rm CC} = \pm \sqrt{2} G_F N_e$$

$$\approx \pm 7.6 \times Y_e \times 10^{-14} \left[\frac{\rho}{\rm g/cm^3} \right] \text{ eV}$$

where, $Y_e = N_e / (N_p + N_n)$, corresponds to the relative electron number density inside the matter and ρ denotes the matter density

Mikheyev-Smirnov-Wolfenstein (MSW) resonance

(<u>L. Wolfenstein, PRD 17 (1978) 2369</u>): 6 GeV < E₁ < 10 GeV

[GeV] 10

Earth's Matter Effect in Neutrino Oscillations

Neutrino oscillation length resonance (NOLR) (Petcov, PLB 434

(1998) 321)/parametric resonance resonance (PR) (Akhmedov,

Earth's Matter Effects: key to Probe Internal Structure of Earth

• Earth's matter effect driven neutrino oscillation measurements provide a complementary and independent information about internal structure of Earth

$$V_{\rm CC} = \pm \sqrt{2} G_F N_e \approx \pm 7.6 \times \underline{Y_e} \times 10^{-14} \left[\frac{\rho}{\rm g/cm^3} \right] \text{ eV}$$

- ρ: matter density Density of each layer inside Earth
- $Y_e = N_e / (N_p + N_n)$: relative electron number density Chemical composition of Earth

IceCube-DeepCore Neutrino Telescope

Ref. : The design and performance of IceCube DeepCore: Astroparticle Physics, 35(10), 615-624 (2012)

Validating Earth's Matter Effect

Brookhaven Forum 2023

1 km³ neutrino detector deep under ice at South Pole

- Three components: IceTop, IceCube and DeepCore
- Neutrino interactions inside ice produce secondary charged particles
- Secondary charged particles emit Cherenkov photons
- 5160 digital optical modules (DOMs) detect Cherenkov photons
- IceCube can detect neutrinos up to **PeV energies**
- **DeepCore**: Denser sub-array in the bottom central region can observe low-energy neutrinos at **GeV-scale**

Event Signatures in IceCube-DeepCore

Track-like events:

Signals:

Predominantly DIS interactions

- Atmospheric muons
- Random detector noise

Anuj Kumar Upadhyay

Validating Earth's Matter Effect

Simulated Neutrino Event Sample

- Convolutional Neural Networks (CNN) based reconstruction
- Monte Carlo (MC) sample exposure: 9.3 years (2012 2021)
- Large number of statistics (~192k events)
- Neutrinos comprise 99.5% of sample
- High statistics (v_{μ} CC)
- Filters are applied to eliminate primary backgrounds: noise and atm. muon contamination (~0.5%)

Selection	Expected MC Events (9.3 yr)	% of Sample
$\nu_e + \bar{\nu}_e \ \mathrm{CC}$	48616	25.2
$\nu_{\mu} + \bar{\nu}_{\mu} \ CC$	110656	57.5
$\nu_{\tau} + \bar{\nu}_{\tau} \ CC$	10938	5.7
$\nu_{\rm all} + \bar{\nu}_{\rm all} \ {\rm NC}$	21412	11.1
$\mu_{ m atm}$	973	0.5
All MC	192597	_

Event processing level (Filter)

3D Binning Scheme

- Matter effect significant at lower energies and higher baselines
- Binning optimization is necessary
- Reduced the energy threshold down to 3 GeV

Observables	Number of Bins	Range	Step
Energy	20	[3, 100] GeV	log
cos(zenith)	20	[-1, 0]	linear
PID	3	[0, 0.33, 0.39, 1] [Cascade, Mixed, Track]	linear

Cascades

Tracks

Total: 70857 events **IceCube Work in Progress** 0.0 0.0 -0.2-0.2**PREM (True)** COS $\theta_{z, reco}$ -0.4-0 4 -0.6-0.6 -0.8 -0.8-1.0-1.016 32 64 $E_{\rm reco}$ (GeV)

Mixed

Total: 60514 events

IceCube Work in Progress

16

 $E_{\rm reco}$ (GeV)

32

64

Validating Earth's Matter Effect

Systematic Uncertainties Considered

• Flux uncertainties

- Cosmic ray spectrum
- Pion & Kaon production uncertainties Barr et al., Phys. Rev. D 74, 094009

Cross section

- Axial mass uncertainty for resonance and quasielastic events
- GENIE CSMS transition for DIS JHEP 08, 042 (2011)

• Detector and Ice properties

- Optical efficiency of the photo sensor
- Ice scattering and absorption The Cryosphere 14, 2537 (2020)
- Birefringence (double refraction of light due to anisotropy of ice) <u>Cryosphere Discuss. 2022, 1 (2022)</u>
- Muon Light Yield (photon propagation in the ice from muons)
- Atmospheric muon scale <u>Gaisser et al.</u> + <u>Sibyll2.1</u>
- Normalization of neutrino event counts
- → In total, about 40 systematics are tested individually; around 20 high-impact parameters are included as nuisance parameters and kept free in the analysis

For more details, see: Phys.Rev.D 108 (2023) 1, 012014

Distributions of Simulated Event Differences & LLH, NO

• Most of the LLH contribution comes from lower energy and higher baselines

Anuj Kumar Upadhyay

Validating Earth's Matter Effect

Asimov Sensitivity to Reject Vacuum Hypo. with IceCube-DeepCore

- True hypo.: 12-layered PREM
- Test hypo.: Vacuum
- Minimized over relevant oscillation and systematic parameters
- Sensitivity for NO is higher than IO due to the lower cross section and flux rate of antineutrino
- For NO: $θ_{23} = 47.5^{\circ} \& \delta_{CP} = 0^{\circ}$
 - Sensitivity = 2.0 σ
- For IO: θ₂₃ = 47.5° & δ_{CP} = 0°
 - \circ Sensitivity = 1.4 σ
- Super-K excludes the vacuum oscillations at 1.6σ PRD 97, 072001 (2018)

Impact of prior on Δm^2_{31}

- ICECLIBE
- Measurement of $\Delta m^2_{\ _{31}}$ and the matter effects have degeneracy
- Freely varying Δm²₃₁ will dilute the sensitivity of matter effect measurements
- Degeneracy effect can be reduced using some external information as a prior on Δm^2_{31}

1.13% Gaussian prior on \Delta m^2_{31} around 0.00247 eV² σ = ± 0.000028 eV²

True Mass	Asimov Sensitivity [σ]			
Ordering	w∕o prior	w prior		
NO	2.0	3.1		
IO	1.4	2.0		

External information as a prior on Δm^2_{31} enhance the significance by 50%

What Next: The IceCube Upgrade

- 7 new strings (Fiducial volume ~ 2 Mton)
- Energy threshold ~ 1 GeV
- Target deploying 2025/26

Validating Earth's Matter Effect

Summary

- Atmospheric neutrinos have energies in the multi-GeV range where the Earth matter effects are significant
- Matter effects would serve as probes of various standard and beyond standard scenarios
- In combination with gravitational and seismic studies, neutrino oscillations and absorption based measurements would pave the way for **"Multi-Messenger Tomography of Earth"**
- Using high statistics (~ 192 k events in 9.3 yr of data), low-energy threshold (~ 3 to 5 GeV), access to multiple baselines, optimized binning scheme in reconstructed energy and zenith, efficient PID, we expect that IceCube-DeepCore can validate the presence of Earth's matter effect with ~ 2.0σ C.L for NO

Anuj Kumar Upadhyay

Validating Earth's Matter Effect

Brookhaven Forum 2023

04/10/2023

17

Neutrinos in the Standard Model (SM)

- Almost massless: at least a million times lighter than electron
- Non-zero neutrino mass: first experimental proof (gateway) for BSM physics

- Three active neutrinos: v_e , v_u , and v_τ
- Zero charge (neutral)
- Fermion (spin 1/2)
- Only couple via weak force (and gravity)
- Neutrinos are massless in the basic SM

Sources of neutrinos

Earth's Matter Effects: key to Probe Neutrino Mass ordering

Multi-messenger Tomography of Earth

Seismic Studies

- Uses seismic waves from earthquakes
- Electromagnetic interactions

Neutrino Absorption Tomography

- Weak interactions
- Absorption of high-energy (TeV-PeV)
 neutrinos

Gravitational Measurement

- Gravitational interactions
- Total mass & moment of inertia

Neutrino Oscillation Tomography

- Weak interactions
- Coherent forward scattering of low-energy (MeV-GeV) neutrinos with electrons

Geoneutrinos

- Brings crucial information about the mantle
- Radiogenic contribution to Earth's heat budget

Present study is based on Earth's matter effects in atmospheric neutrino oscillations at IceCube-DeepCore

Anuj Kumar Upadhyay

Validating Earth's Matter Effect

Brookhaven Forum 2023

PREM Profile vs. Vacuum

By rejecting the vacuum hypothesis with respect to the PREM hypothesis, we aim to distinguish which hypothesis is favoured by atmospheric neutrino data

- 12-layered PREM profile
- For PREM profile, electron number density ratio:
 - $Y_e = N_e / (N_p + N_n)$:
 - Y_e (Inner Core) = 0.4656 (1 layer)
 - Y_e (Outer Core) = 0.4656 (3 layers)
 - Y_e (Mantle) = 0.4957 (8 layers)

Statistical Methods

• Following Poissonian LLH

Test Statistics (TS) = LLH + Prior pull =
$$\sum_{i \in bins} [-\lambda_i + x_i \ln(\lambda_i) - \ln(x_i!)] + \frac{1}{2} \sum_{j \in sys} \frac{(p_j - \hat{p_j})^2}{\sigma_j^2}$$

 \mathbf{x}_i - Observed value of i^{th} bin λ_i - Expected value of i^{th} bin \mathbf{p}_j , $\hat{\mathbf{p}}_j$, and σ_j^2 are the nominal, best-fit, and Gaussian prior of j^{th} systematics, respectively

Asimov Sensitivity to reject vacuum hypothesis

Asimov Sensitivity

(For the assumption of true PREM)

See: Mattias Blennow et al., (JHEP 03 (2014) 028), X Qian et al., (PRD 86 113011 (2012)), and Emilio Ciuffoli et al., (JHEP 01 (2014) 095)

Validating Earth's Matter Effect

<u>95)</u>

Systematic Treatment

Param	Nominal	Range	Fixed/Free		Г	Deven	Naminal	Damma		
Dolta index (Av.)	0 + 0 1		Eroo		\downarrow	Param	Nominal	Range	Fixed/Free	
Detta_index $(\Delta \gamma_v)$	0±0.1	[-0.5, 0.5]	Free	(θ ₁₂	33.41	[31.31, 35.74]	Fixed	
pion_ratio	0	[-0.25, 0.25]	Fixed	Oscillations (6) Cross section (3) Neutrino weight (1) Detector (7)	θ13	8.54	[8.19, 8.89]	Fixed		
barr_a_Pi	0	[-0.5, 0.5]	Fixed			θ,,	47.5	[38, 52]	Free	
barr_b_Pi	0	[-1.5, 1.5]	Fixed			δ _{cp}	0	[0, 360]	Fixed	
barr_c_Pi	0	[-0.5, 0.5]	Fixed			F	Δm ² ₂₄	7.41e-05	[6.82e-05,8.03e-05]	Fixed
barr_d_Pi	0	[-1.5, 1.5]	Fixed				Δm ² ₂₁	2.47e-03	[0.001, 0.004]	Free
barr_e_Pi	0	[-0.25, 0.25]	Fixed		X	M,(QE) (0.99 GeV)	0 ± 1	[-2.0, 2.0]	Free	
barr_f_Pi	0	[-0.5, 0.5]	Fixed		Cross section (3)	┢	M (RES) (1.12 GeV)	0 ± 1	[-2.0, 2.0]	Free
barr_g_Pi	0 ± 0.3	[-1.5, 1.5]	Free			\mathbf{F}	dis csms	0 ± 1	[-3.0. 3.0]	Free
barr_h_Pi	0 ± 0.15	[-0.75, 0.75]	Free		N (Neutrino scale)	1	[0.1. 2.0]	Free		
barr_i_Pi	0 ± 0.61	[-3.05, 3.05]	Free		(1)	v Dom eff	1 ± 0.1	[0.8, 1.2]	Free	
barr_w_K	0 ± 0.4	[-2.0, 2]	Free			\vdash	hole ice p0	0.101569	[-0.6, 0.5]	Free
barr_x_K	0	[-0.5, 0.5]	Fixed			hole ice p1	-0.040344		Free	
barr_y_K	0 ± 0.3	[-1.5, 1.5]	Free		hulk ice abs	1 + 0.05		Free		
barr_z_K	0	[-3.05, 3.05]	Fixed		\vdash	bulk ice scatter	1.05 + 0.1	[0.85, 1.25]	Free	
barr_w_antiK	0	[-2.0, 2]	Fixed			-	buik_ice_scatter	1.05 ± 0.1	[0.05, 1.25]	Froo
barr_x_antiK	0	[-0.5, 0.5]	Fixed			\vdash		0		Free
barr_y_antiK	0	[-1.5, 1.5]	Fixed		+		0.0		Free	
barr_z_antiK	0	[-0.61, 0.61]	Fixed	Atm. muon 🗸		$\Delta \gamma_{\mu}$ (atm. muon index)	0	[-3.0, 3.0]	Fixed	
	-	, - :	1) (2) \		N_{μ} (atm. muon scale)	1 ± 0.4	[0.0999, 3.0]	Free	

Flux (19)

Anuj Kumar Upadhyay

Validating Earth's Matter Effect

Brookhaven Forum 2023

10/2023

24

Simulated Event Distributions, NO

• **PREM & Vacuum**: For true values of all oscillation and systematic parameters

Anuj Kumar Upadhyay

Validating Earth's Matter Effect

Brookhaven Forum 2023

04/10/2023

Convolutional Neural Networks (CNNs)

- Only use DeepCore & nearby IceCube strings;
- Five CNNs trained on balanced MC samples: optimized for different variables. •

Shiqi Yu, DIS2023

5 summarized variables per DOM:

- sum of charges

DOI: 10.22323/1.395.1053

- time of first (last) pulse -
- charge weighted mean -(std.) of times of pulses

Reconstruction Performance

Shiqi Yu, DIS2023

Reconstruction Performance

- Flat median against true neutrino energy and zenith;
- CNN has comparable resolution to current method, and better at low energy (majority of sample)

Final Level Resolution: Energy

J. Micallef, et al. ICRC 2021 proceeding

- Flat median against true neutrino energy:
 - CNN has better resolution at low energy (majority of sample)

Resolution of energy reconstruction as a function of true neutrino energy

Final Level Resolution: Zenith

- Direction bias flat against true energy
- Better resolution for v_u CC (signal)

Resolution of zenith reconstruction as a function of true neutrino energy

Impact of free Δm^2_{31}

• $P(v_{\mu} \rightarrow v_{\mu})$ probability oscillogram for **PREM profile at nominal value** of Δm_{31}^2 and θ_{23}

Anuj Kumar Upadhyay

Validating Earth's Matter Effect Brookhaven Forum 2023 04/10/2023

Impact of free Δm^2_{31}

• $P(v_u \rightarrow v_u)$ probability oscillogram for vacuum profile at nominal value of Δm_{31}^2 and θ_{23}

• $\Delta m_{31}^2 = 2.48 \times 10^{-3} \text{ eV}^2$ (Nominal) and $\theta_{23} = 45^\circ$

Anuj Kumar Upadhyay

Impact of free Δm^2_{31}

• $P(v_{\mu} \rightarrow v_{\mu})$ probability oscillogram for vacuum profile at best-fit value of Δm_{31}^2 and θ_{23}

