

Measuring the Mass of Earth and Core using Neutrino Oscillations in IceCube-DeepCore

Sharmistha Chattopadhyay

sharmistha.c@iopb.res.in, schattopadhyay@icecube.wisc.edu

(For the IceCube collaboration)

Institute of Physics, Bhubaneswar, India Department of Physics and WIPAC, UW Madison, USA

Brookhaven Forum 2023

Advancing Searches for New Physics (BF2023)

DESY

October 4 - 6, 2023

WISCO

Using Neutrinos to Understand Earth's Interior

Current Knowledge about Earth

Knowledge about Earth's interior based on :

Gravitational + Seismic measurements \rightarrow Preliminary Reference Earth Model (PREM)

Current Knowledge about Earth

Knowledge about Earth's interior based on :

probing the Earth

Neutrino Absorption & Oscillation Tomography

Contemporary studies on measurement of the mass of Earth & Earth's core using neutrinos

Neutrino absorption tomography (with IC86)

 $egin{aligned} \mathbf{M}^{
u}_{igoddowskip} &= (\mathbf{6.0}^{+1.6}_{-1.3}) imes \mathbf{10^{24}} \ \mathbf{M}^{
u}_{\mathbf{core}} &= (2.72^{+0.97}_{-0.89}) imes \mathbf{10^{24}} \ \mathbf{kg} \end{aligned}$

- Mass of Earth (Relative 1 σ precision $\rightarrow~{}^{\sim}25\%$)
- Mass of Core (Relative 1\sigma precision $\rightarrow~{\sim}34\%$)

Neutrino oscillation tomography

<u>Atmospheric neutrino oscillation analysis with external</u> <u>constraints in Super-Kamiokande I-IV</u> (Phys. Rev. D, 2018) <u>DUNE atmospheric neutrinos: Earth tomography</u> (JHEP, 2022)

- Super-K measurement (NO) : Relative 1σ precision
 ΔM ~ 21% (328 kton-years)
- DUNE sensitivity (NO) : Relative 1σ precision ΔM ~ 9.48% (400 kton-years)

Image source: Neutrino Earth tomography in DUNE (see talk in MMTE 2022 by Ivan Martinez-Soler)

Analysis

Analysis I : Measuring the Mass of Earth

Can we measure the Mass of Earth using Matter Effects in Neutrino Oscillations in DeepCore?

True profile: 12-layered PREM profile

- Radius of Earth = 6371 km
- Earth has been considered neutral (N_p = N_p)
- Electron number density ratio: $Y_e = N_e / (N_p + N_n)$:
 - \circ Y_e (Inner Core) = 0.4656
 - \circ Y_e (Outer Core) = 0.4656
 - Y_e (Mantle) = 0.4957
- All layers scaled by the same scaling factor
- Hydrostatic equilibrium condition preserved : $\rho_{inner layer} > \rho_{outer layer}$

Using same binning as other two matter effect analyses

Test Statistic : Log Likelihood (LLH) - Used Wilks theorem to determine the test statistic value that corresponds to 1 σ or 68% C.L.

Probabilities & Their Differences [PREM vs. Modified profile], NO

• Main contribution to our signal from lower energy and higher baselines

Expected Event Distributions,NO

PREM & Test hypo.: For true values of all oscillation and systematic parameters

Distributions of Simulated Event Differences & LLH. NO

• Distribution of event difference plotted for true values of osc. and sys. parameters.

• Most of the LLH contribution comes from tracks

Asimov Sensitivity for the Mass of Earth with IceCube-DeepCore

Effect of θ_{23}

- Minimized over relevant oscillation and systematic parameters
- Sensitivity depends on neutrino mass ordering
- Sensitivity for NO is higher than IO due to the lower cross section and flux rate of antineutrino
- Relative 10 precision for NO for $\theta_{23} = 45^{\circ} \& \delta_{CP} = 0^{\circ} : \sim 24\%$
- Relative 1 σ precision improves with $\theta_{_{23}}$

Asimov Sensitivity for the Mass of Earth with IceCube-DeepCore

- Minimized over relevant oscillation and systematic parameters
- Minimal effect of δ_{CP}
- Relative 1 σ precision for NO for θ_{23} = 47.5° & δ_{CP} = 0° : ~ 22%
- Comparable to relative 1σ precision of Super-K (~ 21%) (PhysRevD.97.072001)

Analysis II : Measuring the Mass of Earth's Core

Can we measure the Mass of Earth's Core using Matter Effects in Neutrino Oscillations in DeepCore?

True profile: 3-layered PREM profile

- Radius of Earth = 6371 km
- Earth has been considered neutral (N_p = N_e)
- Electron number density ratio: $Y_e = N_e / (N_p + N_n)$: Yel = 0.4656 , YeO = 0.4656 , YeM = 0.4957
- External constraints used:
 - Total mass of the Earth
 - Moment of Inertia of the Earth
 - Hydrostatic equilibrium condition
- Avg. densities for the true profile have been obtained from the 12-layered PREM model

Using same binning as other two matter effect analyses

Test Statistic : Log Likelihood (LLH) - Used Wilks theorem to determine the test statistic value that corresponds to 1 σ or 68% C.L.

Measuring the Mass of Earth's Core using 3-layered Profile (w/ ext. constraints)

- True profile: 3-layered PREM profile
 - \rightarrow Core : 0 3480 km : $\rho_{C, avg}$ = 11.04 g/cm³
 - \rightarrow Inner mantle : 3480 5701 km : $\rho_{IM, avg}$ = 4.92 g/cm³
 - \rightarrow Outer mantle : 5701 6371 km : $\rho_{OM, avg}$ = 3.55 g/cm³

- Density ranges in theory:
 - \rightarrow Core : 0 3480 km : $\rho_{\rm C}$ = [7.31 12.08] g/cm³
 - → Inner mantle : 3480 5701 km : ρ_{IM} = [4.25 7.31] g/cm³
 - \rightarrow Outer mantle : 5701 6371 km : ρ_{OM} = [1.04 4.25] g/cm³

Distributions of Simulated Event Differences & LLH, NO

Sharmistha Chattopadhyay | Brookhaven Forum | 4th Oct, 2023

Asimov Sensitivity for Mass of Earth's Core using IceCube-DeepCore

The shaded region in the plot signifies the range of core masses which do not adhere to the condition of hydrostatic equilibrium

- Minimized over relevant oscillation and systematic parameters
- Lower bound on Core mass from ext. const. :
 1.29 x 10²⁴ kg
- Upper bound on Core mass from ext. const. : 2.13 x 10²⁴ kg
- Lower bound at 10 for NO for $\theta_{23} = 45^{\circ} \& \bar{\delta}_{CP} = 0^{\circ}$: 1.52 x 10²⁴ kg (~ 22%)
- Upper bound at 10 for NO for $\theta_{23} = 45^{\circ} \& \bar{\delta}_{CP} = 0^{\circ}$: 2.25 x 10²⁴ kg (~ 16%)
- For comparison : Relative 1*o* precision for NO from neutrino absorption tomography : ~ 34%
 (Nature Phys. 15 (2019))
- Lower bound at 1 σ improves with θ_{23}

Asimov Sensitivity for Mass of Earth's Core using IceCube-DeepCore

Effect of δ_{CP}

The shaded region in the plot signifies the range of core masses which do not adhere to the condition of hydrostatic equilibrium

- Minimized over relevant oscillation and systematic parameters
- Minimal effect of $\delta_{_{CP}}$
- Lower bound at 1σ for NO for θ₂₃ = 47.5047°
 & δ_{CP} = 0° : 1.57 x 10²⁴ kg (~ 19%)
- Upper bound at 10 for NO for $\theta_{23} = 47.5047^{\circ}$ & $\delta_{CP} = 0^{\circ} : 2.26 \times 10^{24} \text{ kg} (~ 16\%)$
- For comparison : Relative 1σ precision for NO from neutrino absorption tomography : ~ 34% (<u>Nature Phys. 15 (2019)</u>)

Summary

- Neutrinos serve as an independent and complementary tool in understanding Earth
- Huge baseline and energy range of atmospheric neutrinos gives a big advantage
- Using 9.28 years of DeepCore sample, we expect to obtain a precision of ~22% for mass of Earth and ~18% for mass of Earth's core, for normal ordering, with our choice of oscillation and systematic parameters

Thank You

Backup

Neutrino Oscillations and Matter Effects

Sharmistha Chattopadhyay | Brookhaven Forum | 4th Oct, 2023

Neutrino

- Neutrinos are fermions. They are neutral particles with a spin of ½. They interact only through mainly through weak interaction.
- They are assumed to be massless in the Standard Model.
- Neutrinos come in three flavors : electron neutrino, muon neutrino and tau neutrino

Neutrino Oscillations

- When neutrinos travel from one point to another in space , they oscillate from one flavor to another.
- This is a quantum mechanical effect
- Neutrino oscillations are possible only if neutrinos have mass.

Muon Neutrino

Atmospheric Neutrinos

- Produced by interaction of cosmic rays in the Earth's atmosphere.
- Advantages:
 - Wide range of baselines (15 km to 12757 km)
 - Energy (0.1 GeV to ~TeV).

PRD 83, 123001 (2011)

Sharmistha Chattopadhyay | Brookhaven Forum | 4th Oct, 2023

Statistical Method

Following Poissonian LLH

 $\text{Test Statistics (TS)} = \text{LLH} + \text{Prior pull} = \sum_{i \in \text{bins}} [-\lambda_i + x_i \ln(\lambda_i) - \ln(x_i!)] + \frac{1}{2} \sum_{j \in \text{sys}} \frac{(p_j - \hat{p_j})^2}{\sigma_j^2}$

 x_i - Observed value of i^{th} bin λ_i - Expected value of i^{th} bin p_j , $\hat{p_j}$, and σ_j^2 are the nominal, best-fit, and Gaussian prior of j^{th} systematics, respectively

The IceCube Detector

IceCube-DeepCore

- 1 km³ neutrino detector at South Pole.
- 5160 DOMs deployed between 1450 m and 2450 m below the surface of the ice on 86 vertical strings.
- DeepCore DOMs placed deeper than 1750 m.
 - o 8 closely spaced strings.
 - o 7 lceCube strings.
- 8 DeepCore strings.
 - Bottom 50 DOMS spacing of 7 m (depth 2100 m - 2450 m).
 - Top 10 DOMs spacing of 10 m (depth < 2000 m), form a veto cap.

Binning and Test Statistic

- Signals for matter effect related studies predominantly come from lower energy (3 < E < 8 GeV) and cos (zenith) < -0.6.
- Binning optimized to have fine binning.

Op	tim	ized	bi	nn	ing
					<u> </u>

Observables	Number of Bins	Range	Step
Energy	20	[3, 100] GeV	log
cos(zenith)	20	[-1, 0]	linear
PID	3	[0, 0.33, 0.39, 1] [Cascade, Mixed, Track]	linear

Test Statistic used : Log Likelihood (LLH)

Used Wilks theorem to determine the test statistic value that corresponds to 1σ or 68% C.L.

Mass of Core : Expected Event Distributions, NO

• PREM & Test hypo.: For true values of all oscillation and systematic parameters