

UNIVERSITÉ **DE GENÈVE**

Probing Heavy Neutral Leptons at the FCC-ee

Pantelis Kontaxakis on behalf of the FCC BSM Physics group

Brookhaven Forum 2023

October 4, 2023

Future Circular Collider

Future colliders will offer exclusive insights into understanding the mechanisms of nature

Pioneering advances in science and technology

Future Circular Collider (FCC):

- 91km circumference
- Two stages:
 - <u>Stage 1</u>: FCC-ee (Z, W, H, tt) as a high luminosity factory for Higgs, EW and top
 - <u>Stage 2</u>: FCC-hh (~100 TeV) logical progression at energy frontier, with ion and e-h options

The FCC is a leading-edge facility for direct discovery of new physics!

Pantelis Kontaxakis

Detector concepts at the FCC-ee

CLIC-like Detector (CLD)

- Full silicon vertexdetector+ tracker
- 3D HG calorimeter
- Solenoid outside calorimeter

- Silicon vertex detector
- Short-drift chamber tracker
- Dual-readout calorimeter

Pantelis Kontaxakis

Innovative Detector for an Electron-Positron Accelerator (IDEA)

Allegro

- HG noble liquid calorimeter
- LAr or Lar + Lead or **Tungsten absorber**
- Latest proposal

Consider IDEA detector for the upcoming studies

		Ш		
		Н		
		Н		
		Н		
		Н		
		Н		
		Н		
		H		
		Þ		
		П	0	
-		П	ii ii	
			3	
			0	
	1 N N	Ш		
		Ш		
		Ш		
		Ш		
5		Н		
non		Ы		
		8		
-		Н	Ð	
ື ຄ.		H	22	
89		Н	0	
^o		Н		
7		П		
		П		
		\sim	~	
		Ш	1	
		Щ	10	
		Н	9	
		\square		
		Н		
		Н		
		Н		
		Н		

Event Generation & Workflow

Conduct FCC case studies utilising the "official" analysis tools and framework provided for the FCC

Pantelis Kontaxakis

BSM at FCC-ee

Oiverse experimental requirements necessary for varying signatures

- Prompt
- Decay within the inner detector
- Decay within the calo/muon detector

BSM Particles:

- The FCCee's clean environment and high stats allow to a wide spectrum of couplings and masses

 - Axion-Like Particles (ALP)
 - Exotic Higgs Decays
 - Z' & dark photons
 - Light SUSY, …

Pantelis Kontaxakis

O Heavy Neutral Leptons (HNL) ← <u>Studies to be showcased in this talk</u>

Heavy Neutral Leptons

- Could provide answers to several unresolved questions of the SM:
 - Neutrino masses, Dark Matter, Baryon Asymmetry...

Sterile neutrinos with small mixing angle with SM neutrinos

Diverse final state signatures: both prompt and long lived

Pantelis Kontaxakis

One of the most promising BSM channels for FCC-ee at the Z-pole

●HNL (N_e) \rightarrow ejj (Prompt)

Dimitri Moulin, Pantelis Kontaxakis, Anna Sfyrla

\bigcirc HNL (N_µ) \rightarrow µjj (Prompt + Displaced) Nicolo Valle, Giacomo Polesello

\bigcirc HNL (N_e) \rightarrow eev (Displaced)

\odot HNL (N_µ) \rightarrow µµv (Prompt + Displaced) • Lorenzo Bellagamba

Pantelis Kontaxakis

• Lovisa Rygaard, Juliette Alimena, Rebeca Gonzalez Suarez, Suchita Kulkarni

High branching fraction ~ 50%

Signal:

Backgrounds:

Significant background rejection mostly by applying selection on E_{miss} & distances between the decaying particles \circ M_N=10 - 80 GeV, V_{eN} = 10⁻⁵ - 10⁻² W • $Z \rightarrow bb, Z \rightarrow cc, e^+e^- \rightarrow evqq$ Official <u>Winter2023</u> FCCee samples and configurations

Pantelis Kontaxakis

HNL \rightarrow ejj Analysis

Methodology

Event Selection:

Apply selections on discriminating variables (cut & count)

 $Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right]} -$

Pantelis Kontaxakis

Leading e energy > 35 GeV

$\theta(j_1, j_2) < 2.4 \text{ rad } \& \Delta R(e, jj) < 3$

$$-\frac{b^2}{\sigma^2}\ln\left[1+\frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right] = 2$$

Selection	20 GeV	50 GeV	70 GeV	4-body	$Z \rightarrow cc$	$Z \rightarrow bb$
No selection	10^{5}	10^{5}	10^{5}	10^{5}	4.9×10^{8}	4.4×10^{8}
$\not\!$	9.9×10^4	9.9×10^4	9.9×10^4	7.8×10^4	3.3×10^7	5.6×10^{7}
$E > 12 \& E_{e^-} > 35$	8079	8090	8541	5206	101	817
$E > 12 \& E_{e^-} > 35$	7780	7290	8333	4853	60	46
& $\Psi < 2.4$						
$E > 12 \& E_{e^-} > 35$	7478	5035	3017	3184	2	1
$\& \Psi < 2.4 \& \Delta R < 3$						

Focus on the HNL invariant mass as an observed quantity

Selection extended for entire mass - coupling plane

Pantelis Kontaxakis

Results

Raw number of events

Z = 2

HNL $\rightarrow \mu j j$ Analysis Same high BR as previous analysis

- Obscovery feasible across a broad spectrum of the parameters space of interest
 - High mass \rightarrow Prompt signals
 - Low mass → Delayed signals

Large signal grid generated in mass - coupling plane

• Z Decay backgrounds and 4-fermion $\mu v j j$: $-12 \begin{bmatrix} 1 & 1 & 1 \\ 0 & 10 & 20 \end{bmatrix} = 30$ Official <u>Winter23</u> production & configurations

Pantelis Kontaxakis

Analysis Flow - Selections

Kinematic selection

- Two different SRs depending on n_{jets}
 - 2jets: Dominant at m > 50 GeV
 - 1jet: Dominant at lower masses
- For each region: Investigation variables providing discrimination. E.g.

Mass-dependent selection

 \bullet Require visible HNL mass and E_{miss} to be within 2 - 10% of the resolution in distributions

μvqq

Ζ→μμ

Analysis Flow - Selections

Vertex-based selection

primary vertex

Prompt vs Long Lived selection

- For separation between prompt and LL
 - Choose transverse position of PV so as bkgs become zero: $r_{vpx} = 0.5mm$

Require well-reconstructed primary vertex and most of the Tracks used for

Primary vertex well reconstructed in the volume of the detector

 $|z_{vxp}|$ [mm]

SCOLE

N

Output Looking for U² producing 95% CL excess of events Integrated Luminosity = 240 ab⁻¹

Prompt

Pantelis Kontaxakis

Results

- Sensitivity curve: Points in plane where 3 events are expected after cuts
- Background events = 0

Snowmass Results

Sensitivity analysis of long-lived HNLs

Signal simulation using Type I Seesaw mechanism

- Focused on one benchmark HNL mixing with electron flavours
- Leptonic final states featuring e and ve

 Background simulation using <u>Spring2021</u> campaign
Appendix on the second structure of the Five different decay modes of Z considered as background

HNL \rightarrow eev Analysis

Event Selection

Main selection:

Exactly two electrons, veto on additional photons muons and jets

- Reduce backgrounds with hadronic decays 0
- E_{miss} > 10 GeV
 - Reduce $Z \rightarrow ee$ bkg with fake missing momentum

• $|\mathbf{d}_0| > 0.5 \text{ mm}$

Remove most of the rest of SM background 0

 \odot Discrimination variables: E_{miss} and transverse impact parameter of the electron track $|d_0|$

FCC-ee Simulation (Delphes) FCC-ee Simulation (Delphes) E10² √*s* = 91.0 GeV √*s = 91.0 GeV* 0-2000 mm 0.10² 0-1 mm $L = 150 \, ab^{-1}$ $\rightarrow N v, N \rightarrow eev$ $\rightarrow N v. N \rightarrow eev$ 2 electrons with ld_0l>0.5 mm; No muons, jets, or photons; Missina momentum > 10 GeV Missina momentum > 10 Ge\ $m_N = 20 \text{ GeV}, V_a = 1e-4$ $e^+e^- \rightarrow Z \rightarrow bb$ $m_N = 20 \text{ GeV}, V_a = 1e-4$ $e^+e^- \rightarrow Z \rightarrow bb$ $e^+e^- \rightarrow Z \rightarrow cc$ $e^+e^- \rightarrow Z \rightarrow cc$ $m_N = 20 \text{ GeV}, V_a = 3e-5$ $m_N = 20 \text{ GeV}, V_a = 3e-5$ 10¹ \rightarrow Z \rightarrow uds⁻ \rightarrow Z \rightarrow uds⁻ $\rightarrow Z \rightarrow \tau \tau$ 10' $e^+e^- \rightarrow Z \rightarrow ee$ $e^+e^- \rightarrow Z \rightarrow ee$ 10[°] 10[°] **10**⁴ 10² 10⁻² 10^{-4} 200 400 600 800 1000 1200 1400 1600 1800 2000 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Reco electron tracks Id [mm] Reco electron tracks Id_I [mm]

Figure of merit used for sensitivity:

Contours for s = 0.01 and 0.05

Theory predictions for 4 and 1 signal events (arXiv:2203.05502)

Pantelis Kontaxakis

HNL $\rightarrow \mu\mu\nu$ Analysis Assume that Majorana HNL have mixing coupling different from zero only with the v_{μ}

• Focus on final states with two µ and E_{miss}

Signal samples:

- Wide range of masses and couplings
- Standard tools used

Background samples:

- Official <u>Winter2023</u> samples
- $Z \rightarrow \mu \mu$, $\tau \tau$, bb, cc

Event Selection - Efficiencies

Minimal requests for the preselection:

- with p > 3 GeV
- to the IP (D_{xy})

 Displaced vertex main selection cut for signal/bkg separation

Exactly two tracks in the central detector reconstructed as muons

Optimizing search based on the distance from the 2-µ decay vertex

HNL mass = 20 GeV, V_mix = 10^-5

Event Selection - Efficiencies

• Apply cuts on $cos\theta$:

- **Signal efficiency** after requiring: - preselection
- $-\cos\theta > -0.95$
- $D_{xy} > 1 \text{ cm}$

Sensitivity

Interpolation of the sensitivity contours using parametric fit to parameterize the efficiency vs decay length

Expected limits

- Results obtained assuming negligible background for the three hypotheses of the D_{xy}
- D_{xy} cut should be tuned once a more reliable estimation of the bkg is obtained

Lepton number violation

Pantelis Kontaxakis

Study of properties

Dirac vs Majorana HNLs D. Moulin, P. Kontaxakis, T. Sharma, A. Sfyrla

- Oirac (LNC) and Majorana (LNC+LNV) HNLs produce distinct kinematic distributions
 - Establishing the final state variables wherein the difference between Dirac & Majorana can be observed (<u>arXiv:2105.06576</u>)

Outilize metrics (asymmetries, angular) distributions, ...) where the LNV nature of the processes can be identified

Pantelis Kontaxakis

H→eev Angle between e⁻ & e⁺ 22000 00000 /euts 20 GeV Maioran 50 GeV Dirac 70 GeV 12000 6000 2000 na/Dirac Majora 0.8 0.6 -0.8 -0.6-0.4-0.20.2 0.4 0.6 0.8 -1

arXiv:2203.05502

Reconstructed $\cos \theta$ ee

Discrimination Variables (HNL→ejj channel)

• Electron energy, HNL (dijet) energy, Electron - HNL angle and related variables

- Studied both at the generation and reconstruction level
- Various HNL masses investigated

Very good discrimination power for several variables

Pantelis Kontaxakis

Effective discrimination achieved by separately analyzing the e+/e- distributions

Illustrative plots:

Summary & Outlook

- **both prompt and long-lived channels**
- Oiverse signals: HNLs, ALPs, unconventional Higgs decays and more

OHNL exciting channel for BSM searches in FCCee

- Analyses demonstrating sensitivity to even very small mixing angles
- entire parameter space

Intensive efforts are currently underway on optimizing the sensitivity for **benchmark signals**

Outstanding potential of FCC-ee for direct exploration of BSM signatures in

Integration of prompt and LLP signatures complementary in covering the

Studies show promising results in effectively probing lepton number violation

Backup Slides

Pantelis Kontaxakis

Ζ→μμ

Kinematic selection

- Two different SRs depending on n_{jets}
 - 2jets: Dominant at m>50 GeV
 - 1jet: Dominant at lower masses
- For each region: Investigation variables providing discrimination πbbAr

Pantelis Kontaxakis

HNL $\rightarrow \mu j j$ Selections

Mass-dependent selection

• Require:

 $M_{vis} \in M_{N_1} \pm 2 \times 10\% \times \sqrt{M_{N_1}/\text{GeV}}$ where M_{vis}: sum of visible 4-momenta to select HNL mass and v recoil energy

• Apply also cut on E_{miss}: $E_{miss} \in \hat{p}_{\nu}(M_{N_1}) \pm 2 \times 10\% \sqrt{\hat{p}_{\nu}/\text{GeV}/c}$ where $\hat{p}_{\nu}(M_{N_1}) = \frac{M_Z^2 - M_{N_1}^2}{2M_Z}$ cour

HNL $\rightarrow \mu j j$ Selections

Vertex-based selection

- Require well-reconstructed primary vertex and most of the Tracks used for primary vertex
- Substantial rejection for heavy flavours

Prompt vs Long Lived selection

- For separation between prompt and LL
 - Choose transverse position of PV so as bkgs become zero: $r_{vpx} = 0.5mm$
- About five times values r_{vxp} for extreme tails of bkgs

1. Event Filter

2. Event Selection 3. Vertex selection

1 muon > 3 tracks $E_{\mu} \geq 3 \,\,\mathrm{GeV}$ $E_{miss} > 5 \text{ GeV}$

1 lepton (muon) Cuts on p_{miss} , jets, μ and visible mass

4. Mass-dependent kin. selection

5a. Displacement: prompt **5b.** Displacement: LL

 M_{vis} within $2 \times 10\% \sqrt{M}$ E_{miss} within $2 \times 10\% \sqrt{p_{\nu}}$

 $r_{vert}^{primary} > 0.5~\mathrm{mm}$ $D_{0,\mu} < 8\sigma$ if $M_{N_1} > 70$

Pantelis Kontaxakis

HNL $\rightarrow \mu j j$ Analysis Flow

$$\frac{N_{tracks} - N_{tracks}^{primary}}{\chi^2_{vtx, primary} < 10} < 5$$

$$r_{vert}^{primary} < 0.5~{\rm mm}$$

Pantelis Kontaxakis

HNL \rightarrow µjj | **Final Result**

 m_{N_1} [GeV]

Interpolation of the sensitivity contours tested in two ways:

- Using the python interpolation method "LinearNDInterpolator"
- Using parametric fit to parametrize the eff vs decay length

Expected limits

- Reliable estimation of the bkg
- Parametric fit significantly improves the sensitivity

HNL $\rightarrow \mu\mu\nu$ | Sensitivity

Dirac vs Majorana HNLs

Decay length for Dirac (blue) and Majorana (pink) HNLs of mass $m_N = 50$ GeV and coupling $|V_{eN}| = 10^{-3}$ at the generator level

Pantelis Kontaxakis

