

Probing Heavy Neutral Leptons at the FCC-ee

Pantelis Kontaxakis on behalf of the FCC BSM Physics group

Brookhaven Forum 2023

October 4, 2023

Future Circular Collider

- Future colliders will offer exclusive insights into understanding the mechanisms of nature
- Pioneering advances in science and technology
- Future Circular Collider (FCC):
 - •91km circumference
 - Two stages:
 - Stage 1: FCC-ee (Z, W, H, tt) as a high luminosity factory for Higgs, EW and top
 - Stage 2: FCC-hh (~100 TeV) logical progression at energy frontier, with ion and e-h options

The FCC is a leading-edge facility for direct discovery of new physics!

Detector concepts at the FCC-ee

CLIC-like Detector (CLD)

- Full silicon vertexdetector+ tracker
- 3D HG calorimeter
- Solenoid outside calorimeter

Innovative Detector for an Electron-Positron Accelerator (IDEA)

- Silicon vertex detector
- Short-drift chamber tracker
- Dual-readout calorimeter

Allegro

- HG noble liquid calorimeter
- LAr or Lar + Lead or Tungsten absorber
- Latest proposal

Event Generation & Workflow

Conduct FCC case studies utilising the "official" analysis tools and framework provided for the FCC

BSM at FCC-ee

Diverse experimental requirements necessary for varying signatures

- Prompt
- Decay within the inner detector
- Decay within the calo/muon detector

BSM Particles:

- The FCCee's clean environment and high stats allow to a wide spectrum of couplings and masses
 - Heavy Neutral Leptons (HNL) ← Studies to be showcased in this talk
 - Axion-Like Particles (ALP)
 - Exotic Higgs Decays
 - Z' & dark photons
 - o Light SUSY, ...

Heavy Neutral Leptons

- One of the most promising BSM channels for FCC-ee at the Z-pole
 - Could provide answers to several unresolved questions of the SM:
 - O Neutrino masses, Dark Matter, Baryon Asymmetry...
- Sterile neutrinos with small mixing angle with SM neutrinos
 - Diverse final state signatures: both prompt and long lived

arxiv:2203.05502

Pantelis Kontaxakis M [GeV]

Discovery analyses

- ⊕HNL (N_e) → ejj (Prompt)
 - Dimitri Moulin, Pantelis Kontaxakis, Anna Sfyrla
- ⊕ HNL (N_μ) → μjj (Prompt + Displaced)
 - Nicolo Valle, Giacomo Polesello
- ⊕HNL (N_e) → eev (Displaced)
 - Lovisa Rygaard, Juliette Alimena, Rebeca Gonzalez Suarez, Suchita Kulkarni
- ⊕HNL (N_μ) → μμν (Prompt + Displaced)
 - Lorenzo Bellagamba

HNL → ejj Analysis

• High branching fraction ~ 50%

Significant background rejection mostly by applying selection on
Solutions are between the decaying particles

Emiss & distances between the decaying particles

Signal:

 \circ M_N=10 - 80 GeV, V_{eN} = 10⁻⁵ - 10⁻²

Backgrounds:

- Z→bb, Z→cc, e+e-→evqq
 - Official Winter2023 FCCee samples and configurations

Methodology

Event Selection:

Apply selections on discriminating variables (cut & count)

E_{miss} > 12 GeV

Leading e energy > 35 GeV
Removes most of the electrons from jets

 $\theta(j_1, j_2) < 2.4 \text{ rad } \& \Delta R(e, jj) < 3$

Selections based on significance, with 10% syst. uncertainty:

$$Z = \sqrt{2\left(n \ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2} \ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]} = 2$$

Results

Raw number of events

Cutflow:

Selection	20 GeV	50 GeV	70 GeV	4-body	$Z \rightarrow cc$	$Z \rightarrow bb$
No selection	10^{5}	10^{5}	10^{5}	10^{5}	4.9×10^{8}	4.4×10^{8}
E > 12	9.9×10^{4}	9.9×10^{4}	9.9×10^{4}	7.8×10^4	3.3×10^{7}	5.6×10^{7}
$E > 12 \& E_{e^-} > 35$	8079	8090	8541	5206	101	817
$E > 12 \& E_{e^-} > 35$	7780	7290	8333	4853	60	46
$\& \Psi < 2.4$						
$E > 12 \& E_{e^-} > 35$	7478	5035	3017	3184	2	1
& $\Psi < 2.4 \& \Delta R < 3$						

Contour:

Focus on the HNL invariant mass as an observed quantity

Selection extended for entire mass - coupling plane

HNL → µjj Analysis

Same high BR as previous analysis

Discovery feasible across a broad spectrum of the parameters space of interest

- High mass → Prompt signals
- Low mass → Delayed signals
- Large signal grid generated in mass - coupling plane

Official Winter23 production & configurations

Analysis Flow - Selections

• Kinematic selection

- Two different SRs depending on n_{jets}
 - 2jets: Dominant at m > 50 GeV
 - 1jet: Dominant at lower masses
- For each region: Investigation variables providing discrimination. E.g.

 $Z\rightarrow \mu\mu$

Mass-dependent selection

• Require visible HNL mass and E_{miss} to be within 2 - 10% of the resolution in distributions

Analysis Flow - Selections

Vertex-based selection

 Require well-reconstructed primary vertex and most of the Tracks used for primary vertex

$$\begin{array}{l} N_{tracks} - N_{tracks}^{primary} < 5 \\ \chi^2_{vtx,primary} < 10 \end{array}$$

Prompt vs Long Lived selection

- For separation between prompt and LL
 - Choose transverse position of PV so as bkgs become zero: $r_{vpx} = 0.5$ mm

Primary vertex well reconstructed in the volume of the detector

Results

- Looking for U² producing 95% CL excess of events
- Integrated Luminosity = 240 ab⁻¹

Prompt

<u>LLP</u>

- Sensitivity curve: Points in plane
 where 3 events are expected after cuts
- Background events = 0

HNL -> eev Analysis

Snowmass Results

- Sensitivity analysis of long-lived HNLs
- Signal simulation using Type I Seesaw mechanism
 - Focused on one benchmark HNL mixing with electron flavours
 - Leptonic final states featuring e and ve

- Background simulation using <u>Spring2021</u> campaign
 - Five different decay modes of Z considered as background

Event Selection

- Discrimination variables: E_{miss} and transverse impact parameter of the electron track |d₀|
- Main selection:
 - Exactly two electrons, veto on additional photons muons and jets
 - Reduce backgrounds with hadronic decays
 - E_{miss} > 10 GeV
 - Reduce Z→ee bkg with fake missing momentum
 - $|d_0| > 0.5 \text{ mm}$
 - Remove most of the rest of SM background

Sensitivity

• Figure of merit used for sensitivity: $s = \frac{S}{\sqrt{S + B + \Delta B}}$

• Contours for s = 0.01 and 0.05

Theory predictions for 4 and 1 signal events (arXiv:2203.05502)

HNL → µµv Analysis

- Assume that Majorana HNL have mixing coupling different from zero only with the ν_{μ}
 - \bullet Focus on final states with two μ and E_{miss}

Signal samples:

- Wide range of masses and couplings
- Standard tools used

Background samples:

- Official Winter2023 samples
- $Z \rightarrow \mu\mu$, $\tau\tau$, bb, cc

Event Selection - Efficiencies

- Minimal requests for the preselection:
 - Exactly two tracks in the central detector reconstructed as muons with p > 3 GeV
- Optimizing search based on the distance from the 2-μ decay vertex to the IP (D_{xy})

Displaced vertex
 main selection cut
 for signal/bkg
 separation

Event Selection - Efficiencies

Apply cuts on cosθ:

Signal efficiency after requiring:

- preselection
- $-\cos\theta > -0.95$
- $-D_{xy} > 1$ cm

Sensitivity

Interpolation of the sensitivity contours using parametric fit to parameterize the efficiency vs decay length

Expected limits

- Results obtained assuming negligible background for the three hypotheses of the D_{xy}
- D_{xy} cut should be tuned once a more reliable estimation of the bkg is obtained

Study of properties

Lepton number violation

Dirac vs Majorana HNLs

D. Moulin, P. Kontaxakis, T. Sharma, A. Sfyrla

Dirac (LNC) and Majorana (LNC+LNV) HNLs produce distinct kinematic distributions

 Establishing the final state variables wherein the difference between Dirac & Majorana can be observed (arXiv:2105.06576)

• Utilize metrics (asymmetries, angular distributions, ...) where the LNV nature of the processes can be identified H→eev Angle between e- & e+

Discrimination Variables (HNL→ejj channel)

• Electron energy, HNL (dijet) energy, Electron - HNL angle and related variables

- Studied both at the generation and reconstruction level
- Effective discrimination achieved by separately analyzing the e+/e- distributions
- Various HNL masses investigated

Illustrative plots:

Very good discrimination power for several variables

Summary & Outlook

- Outstanding potential of FCC-ee for direct exploration of BSM signatures in both prompt and long-lived channels
- Diverse signals: HNLs, ALPs, unconventional Higgs decays and more
- HNL exciting channel for BSM searches in FCCee
 - Analyses demonstrating sensitivity to even very small mixing angles
 - Integration of prompt and LLP signatures complementary in covering the entire parameter space
 - Studies show promising results in effectively probing lepton number violation

Intensive efforts are currently underway on optimizing the sensitivity for benchmark signals

Backup Slides

FCC-ee Physics Program

HNL → µjj Selections

Kinematic selection

- Two different SRs depending on n_{jets}
 - 2jets: Dominant at m>50 GeV
 - 1jet: Dominant at lower masses
- For each region: Investigation variables providing discrimination

Mass-dependent selection

Require:

$$M_{vis} \in M_{N_1} \pm 2 \times 10\% \times \sqrt{M_{N_1}/\,{\rm GeV}}$$
 where M_{vis}: sum of visible 4-momenta to

Apply also cut on E_{miss}:

$$E_{miss} \in \hat{p}_{\nu}(M_{N_1}) \pm 2 \times 10\% \sqrt{\hat{p}_{\nu}/\operatorname{GeV}/c}$$

select HNL mass and v recoil energy

where
$$\hat{p}_{
u}(M_{N_1}) = rac{M_Z^2 - M_{N_1}^2}{2\,M_Z}$$

HNL → µjj Selections

Vertex-based selection

- Require well-reconstructed primary vertex and most of the Tracks used for primary vertex
- Substantial rejection for heavy flavours

$$N_{tracks} - N_{tracks}^{primary} < 5$$

$$\chi^2_{vtx,primary} < 10$$

Prompt vs Long Lived selection

- For separation between prompt and LL
 - Choose transverse position of PV so as bkgs become zero: $r_{vpx} = 0.5$ mm
- About five times values r_{vxp} for extreme tails of bkgs

Very good resolution in position of HNL reconstructed vertex

HNL → µjj | Analysis Flow

1. Event Filter	2. Event Selection	3. Vertex selection	
1 muon \geq 3 tracks $E_{\mu} \geq$ 3 GeV $E_{miss} \geq$ 5 GeV	1 lepton (muon) Cuts on p_{miss} , jets, μ and visible mass	$\begin{aligned} N_{tracks} - N_{tracks}^{primary} < 5 \\ \chi^2_{vtx,primary} < 10 \end{aligned}$	
4. Mass-dependent kin. selection	5a. Displacement: prompt	5b. Displacement: LL	
M_{vis} within $2 \times 10\% \sqrt{M}$ E_{miss} within $2 \times 10\% \sqrt{p_{\nu}}$	$r_{vert}^{primary} > 0.5 \text{ mm}$ $D_{0,\mu} < 8\sigma \text{ if } M_{N_1} > 70$	$r_{vert}^{primary} < 0.5 \text{ mm}$	

HNL → µjj | Final Result

HNL → µµv | Sensitivity

Interpolation of the sensitivity contours tested in two ways:

Using the python interpolation method "LinearNDInterpolator"

Using parametric fit to parametrize the eff vs decay length

Expected limits

Reliable estimation of the bkg

 Parametric fit significantly improves the sensitivity

 N_{μ} 95%CL limits (Lumi=150 ab⁻¹)

Dirac vs Majorana HNLs

Decay length for Dirac (blue) and Majorana (pink) HNLs of mass $m_N = 50$ GeV and coupling $|V_{eN}| = 10^{-3}$ at the generator level