UNIVERSITY OF MICHIGAN

First Results and Status of the LUX-ZEPLIN Experiment

Michael Williams

On Behalf of the LZ Collaboration Brookhaven Forum 2023 4th-6th October, 2023

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- US UK Portugal Korea Australia

37 Institutions, 250 scientists, engineers, and technical staff

LZ Collaboration Meeting University Of Maryland 5th-7th January 2023

Michael Williams - michrw@umich.edu

Brookhaven Forum 2023

Sanford Underground Research Facility (SURF) in Lead, SD

Calibration Source Deployment Tubes (3 Total)

17T Gd-loaded liquid scintillator

> 120 Outer Detector PMTs

> > 121 12

2T LXe Skin Veto

> 131 Skin PMTs

60,000 gallons of ultrapure water

494 LXe PMTs

7T Active LXe Target

Neutron Calibration Conduit (2 total)

The LUX-ZEPLIN Detector

Dual Phase Time Projection Chamber

- Primary scintillation light (S1)
- Secondary scintillation induced from free charge (S2)
- 3D reconstruction allows for fiducialization
- ER/NR discrimination from S1:S2 ratio

Z LZ Vetoes

- Skin Veto
 - 4-8cm of LXe between the TPC and inner cryostat
 - 131 2" PMTs for tagging γ s that enter or leave the TPC
 - \circ 78 +/- 5% γ tagging efficiency
 - Measured with ¹²⁷Xe decays

- Outer Detector (OD)
 - 6 acrylic tanks filled with 17 tonnes of Gd-loaded liquid scintillator
 - 120 8" PMTs for tagging muons in the water and neutron interactions in scintillator
 - NR tagging-efficiency of 88.5%

Michael Williams - michrw@umich.edu

LZ's First Science Run (SR1)

- Engineering run to show LZ's stability and potential
- Stable conditions
 - Drift field: 193 V/cm
 - Extraction Field: 7.3 kV/cm in gas
 - \circ >97% of PMTs operational
 - Liquid temperature: 174.1K
 - Gas Pressure (1.791 bar)
 - Stable liquid level

Continuous Xe purification

- 3.3 t/day through getter
- 5-8ms electron lifetime throughout run

First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment <u>Phys. Rev. Lett. **131**</u>, 041002

Z TPC Calibrations

- Calibrated with external and internal sources
- Tritiated Methane
 - Spatially homogeneous source of β ER, 0-18.6
- External D-D fusion
 - Monoenergetic 2.45 MeV neutrons
 - Up to 10⁹ neutrons per second
- Tuned with NEST

simulation package

- Provides detector response model
- g₁ = 0.114 +/- 0.002 phd/photon
- $G_2 = 47.1 + 1.1 \text{ phd/electron}$
- Extraction Efficiency = 80.5
 +/- 3.7%

LZ Background Determination

- For rare event searches, we need to understand our backgrounds!
- LXe has good self shielding we can "fiducialize"

SR1 Data Selection Cuts

 Cuts developed with calibration and sideband data

Michael Williams - michrw@umich.edu

Brookhaven Forum 2023

SR1 Background Model

- From data we measure activiates of background sources to create of model of backgrounds
- Note the 0 expected neutrons most dangerous WIMP background!
 - Constrained by applying our OD efficiency on tagged fiducial single scatter events

Source	Expected Events
β decays + det ER	218 ± 36
$ u { m ER} $	27.3 ± 1.6
¹²⁷ Xe	9.2 ± 0.8
124 Xe	5.0 ± 1.4
¹³⁶ Xe	15.2 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01
Accidentals	1.2 ± 0.3
Subtotal	276 ± 36
37 Ar	[0, 291]
Detector neutrons	$0.0^{+0.2}$
$30{ m GeV/c^2}~{ m WIMP}$	—
Total	_

Z SR1 Dataset

Michael Williams - michrw@umich.edu

WIMP Search Results (Spin-Independent)

- Consistent with a background-only hypothesis
 - Two-sided PLR analysis
- Most stringent cross-section limit at 30 Gev/c² : 9.2x10⁻⁴⁸cm²
- World leading exclusion limit of SI WIMPs!

WIMP Search Results (Spin-Dependent)

- Stringent spin dependent limits for both neutron and proton
- Gray bands represent uncertainty on the Xe form factor

Z Low-Energy ER Search

- Searches for new physics using ERs from 1-15 keV
- ALPs, Axions, Migdal-channel WIMPS, neutrino physics, hidden photons
- "A search for new physics in low-energy electron recoils from the first LZ exposure" 2307.15753

10

10

MIMP-nucleon σ_{SI}^{2} [cm²] 10^{-38} 10^{-39} 10^{-40} 10^{-41} 10^{-41}

10-4

EDELWEISS (Surf.)

(2023)

EDELWEISS

Bigh-Energy NR Search

M

Preliminary 60 Livedays

5.5 tonne Fiducial

- Can also set limits on EFT WIMP models
- Measure sensitivity to a set of 15 non-relativistic operators
- Can use same operators to model interaction lagrangians for WIMPS and SM particles

 10^{2}

10

 10^{0}

d^s₉ (dimensionless)

Looking Ahead

- LZ has set world leading WIMP limits with just 60 live days
- More science can be done with the initial exposure Low-Energy ER High-Energy NR More on the horizon LZ is currently taking data with a goal of 1000 live days ⁸B physics Ovββ searches So much morel
- - So much more! \cap
- Stay tuned for new results!

WIMP mass $[GeV/c^2]$

UNIVERSITY OF MICHIGAN

First Results and Status of the LUX-ZEPLIN Experiment <u>Michael Williams</u> Brookhaven Forum 2023 4th-6th October 2023

Thank you

Science and Technology Facilities Council

КĶ

