

B anomalies at Belle II

Elisa Manoni (INFN Perugia) on behalf of the Belle II collaboration

Anomalies & B-physics

- Standard Model (SM) predictions greatly confirmed by a variety of flavour and non-flavour measurements
- Hints for anomalies from indirect searches of New Physics (NP) effects: some are gone, some are persisting
- Will focus on Belle II NP searches in :
 - LFU tests in $b \rightarrow c \ell \nu$
 - $B^+ \rightarrow K^+ \nu \overline{\nu}$

Belle II is an ideal playground for the study of B fina

- nearly 4π detector
- constraints from well-known initial state kinem
- clean environment compared to hadron collic

als states with missing energy:	(see <u>Carlo's</u>
	<u>talk</u> for more
. •	details on
natics	BelleII and
der	SuperKEKB)

$R(D^*)$ and R(X) measurements

Elisa Manoni, INFN Perugia

LFU tests with $b \rightarrow c \ell v$: overview

• Four searches with 189 fb⁻¹

 τ and ℓ ($\ell = e$, e, μ:

Common key element: hadronic tag

- fully reconstruct one B(tag) in a variety of hadronic modes through a machine-learning-based algorithm [Keck, T. et al. Comput Softw Big Sci 3, 6 (2019)]
- search for the signal signature in its recoil
- sub-% tagging efficiency, allow to reduce background contamination and infer signal side kinematics

	Inclusive	Exclusive (X=any decay)
, μ):	$R(D^*)$	$R(X_{\tau/\ell})$
	$\Delta A_{FB} = A^{\mu}_{FB} - A^{e}_{FB}$ accepted by PRL	$R(X_{e/\mu})$

R(D*) measurement

Ratio in exclusive searches:

$$R(D^*) = \frac{\mathcal{B}(B)}{\mathcal{B}(B)}$$

- $B \rightarrow D^* \tau \nu$ and $B \rightarrow D^* \ell \nu$ measured by two-dimensional binned likelihood fit to
 - missing mass of undetected neutrinos
 - total energy from extra photons (E_{ECL})
- Result:

$$R(D^*) = 0.267 \stackrel{+0.041}{_{-0.039}}(\text{stat.}) \stackrel{+}{_{-0.039}}$$

- Main systematic uncertainty from size of simulated samples and E_{ECL} modelling
- Consistent with SM and previous measurements

 $R(X_{\tau/\ell})$ measurement (1)

- Going inclusive: $R(X_{\tau/\ell}) = \frac{\mathcal{B}(B \to X \tau \nu_{\tau})}{\mathcal{B}(B \to X \ell \nu_{\ell})},$
 - alternative to $R(D^{(*)})$ measurements: theoretically more clean, potentially more precise from the experimental point of view
- First measurement at B factories
- Variables for yield extraction:
 - missing mass of undetected neutrinos (M^2_{miss})
 - lepton momentum in B rest frame ($p^{B_{\ell}}$)

$$\ell = e, \mu$$

Experimentally challenging due to background contamination from many modes —> extensive use of control samples to correct and validate fit templates and background expectation

 $R(X_{\tau/\ell})$ measurement (II)

• Results:

separating electrons and muons:

 $R(X_{\tau/e}) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$ $R(X_{\tau/\mu}) = 0.222 \pm 0.027 \text{ (stat)} \pm 0.050 \text{ (syst)}$

combining lepton-flavours

 $R(X_{\tau/\ell}) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$

- Main systematic uncertainties from knowledge of BF and form factors for signal and normalisation mode, PDF shape, size of simulated sample
- In agreement with SM prediction and R(D^(*)) measurements

10/03/2023

$R(X_{e/\mu})$ measurement

- Similar analysis wrt ratio with τ 's
- Result:

 $R(X_{e/\mu}) = 1.007 \pm 0.009 \text{ (stat)} \pm 0.019 \text{ (syst)}$

- Dominant systematic uncertainty from lepton identification
- Consistent with SM expectation, most precise measurement to date

<u>PhysRevLett.131.051804</u>

• While warming up for R(X_{τ/ℓ}), measure $R(X_{e/\mu}) = \frac{\mathcal{B}(B \to Xe\nu)}{\mathcal{B}(B \to X\mu\nu)}$

Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$

Elisa Manoni, INFN Perugia

Motivation and experimental status

Theory:

- $b \rightarrow s$ transition prohibited at tree level in the SM
 - branching fraction: (5.6 ± 0.4) × 10⁻⁶ [PRD 107, 119903 (2023)]

Motivation and experimental status

Theory:

S

Motivation and experimental status

Theory:

- $b \rightarrow s$ transition prohibited at tree level in the SM
 - branching fraction: $(5.6 \pm 0.4) \times 10^{-6} [PRD 107, 119903 (2023)]$
- Can receive contribution from NP
 - new mediators, new invisible particles in the final state (e.g. [PRD 102, 015023 (2020)], [PL B 821 (2021) 136607])

Experiment:

- Challenges:
 - low branching fraction with large background
 - no peak two neutrinos leads to no good kinematic constraint
 - Signal not observed from previous measurements

Unique to Belle II

Elisa Manoni, INFN Perugia

Belle II measurement analysis techniques

Separate signal from background by exploiting properties of signal kaon, event topology, particles not associated to signal B (nor to B_{tag} , in HTA).

• Updated search for $B^+ \rightarrow K^+ \nu \overline{\nu}$ with full pre-LS1 dataset (362 fb⁻¹) using two methods:

Purity

Background suppression and signal extraction strategy

- Background suppression:
 - **ITA**: 2 BDTs in cascade, BDT1 as basic filter and BDT2 as main tool for background suppression —> x3 sensitivity increase wrt BDT1
 - **HTA**: Single BDT
- Measure signal strength μ = signal branching fraction in units of SM* rate, by fitting:
 - ITA: classifier output and mass squared of the neutrino pair (q²)
 - **HTA**: classifier output

Analysis strategy validation using a variety of control samples (in the following validation shown for ITA, applicable to HTA)

Signal efficiency Validation

- Use $B^+ \rightarrow J/\psi(\mu\mu)K^+$ control channel
 - remove muons from reconstructed objects to mimic neutrinos and replace K⁺ kinematics from simulated signal events to match signal topology (both in data and MC)
- Data/MC efficiency ratio: 1.00 ± 0.03 → good agreement
- 3% is included as signal shape systematic uncertainty

Background validation

Some examples:

 off-resonance data to validate modelling of qq background

• Pion-enriched sideband to validate modelling of $B \rightarrow X_c (\rightarrow K_L + X)$

• $B^+ \rightarrow K^+ K_s K_s$ used to model $B^+ \rightarrow K^+ K_L K_L$ (signal-like, with BF one order of magnitude larger than SM signal rate)

Closure test: measuring a known and rare mode

- Minimally adapt ITA B+ \rightarrow K+ $\nu\bar{\nu}$ to measure BF(B+ $\rightarrow \pi^+$ K⁰)
 - similar branching fraction to SM $B^+ \rightarrow K^+ \nu \overline{\nu}$

• Measured BF($B^+ \rightarrow \pi^+ K^0$) = (2.5 ± 0.5) x 10⁻⁵

consistent with PDG [(2.38 \pm 0.08) x 10⁻⁵]

Elisa Manoni, INFN Perugia

Systematic uncertainties

- Dominant sources of systematic uncertainties for ITA :
 - $B\overline{B}$ background normalisation
 - Limited size of simulation sample for the fit model
 - knowledge of $B^+ \rightarrow K^+K_LK_L$ decay rate and modelling of $B^+ \rightarrow D^{**}\ell\nu$ decays

• For the HTA, use similar set of systematic uncertainties. Dominant are background normalisation, simulation statistics, and systematic on mismodelling of extra-photon multiplicity.

Results

Inclusive tag analysis

Consistent at 1.2σ

Results

Inclusive tag analysis

(μ = measured BF in units of SM rate)

Conclusions

- flavour sector
- energy
- Several test of LFU on 189 fb⁻¹:
 - first Belle II measurement of R(D*)
 - measurement of $R(X_{e/\mu})$
- First evidence for $B^+ \rightarrow K^+ \nu \bar{\nu}$ on 362 fb⁻¹, 2.8 σ above SM prediction.

• B decays with missing energy in the final state as probe for NP searches in the

• Belle II is an ideal playground for the study of B finals states with missing

• unique measurement of $R(X_{\tau/\ell})$, first of a kind at B-factories; most precise

Extra-slides

Elisa Manoni, INFN Perugia

Comparison with previous measurements

(*) Belle reports upper limits only; branching fractions are estimated using published number of events and efficiency

- ITA result has some tension with previous semileptonic tag measurements:
 - 2.4 σ tension with BaBar
 - 1.9 σ tension with Belle

• HTA result in agreement with all the previous measurements

Overall compatibility is good: χ /ndf = 4.3/4

10

Selection efficiency

Hadronic tag analysis has much lower efficiency w.r.t. inclusive one, but a smaller variation in q²

Post fit distributions (ITA)

Examples:

Signal region $\mu(BDT_2) > 0.92$

High sensitivity bins of the signal region

> 0.98

Post fit distributions (HTA)

Examples:

HTA Signal region $\mu(BDT_h) > 0.4$

More on BBbar background composition

Validation of particle identification

- Kaon candidate should satisfy particle ID criteria
 - kaonID efficiency ~ 68%
 - pion-Kaon Mis-ID rate ~ 1.2%
- PID Data/MC correction factors obtained from $D^* \rightarrow D^* \pi D(K\pi)$ control sample
 - Associated errors are propagated as systematic uncertainties
- Validation with $B \rightarrow D(K\pi)h$ (h = K, π) control samples, where :
- D daughters are removed to mimic signal topology
- Apply selection of signal channel
- Fit difference between reconstructed and expected total energy (ΔE) to obtain yields and **calculate fake rate**

Data consistent with MC within 9%: No further corrections applied

BBbar backgrounds (I)

Semileptonic B^+ decays with K coming from a D decay are checked in:

- O Invariant mass of the signal kaon and a ROE charged particle (most probable mass hypothesis from PID info $X = \pi, K, p$)
- Resonances well reproduced

 $B^+ \to K^+ \nu \bar{\nu}$ after BDT_1 selection

BBbar backgrounds (I)

Hadronic decays involving K and D mesons $B^0 \to K^+ D^{*-}$ and $B^+ \to K^+ \overline{D^{*0}}$ are critical because D decays to K_I^0 are poorly known:

- Modelling checked with pion enriched sample (pion ID instead of kaon ID: $B \rightarrow \pi X$)
- 3-components fit to q_{rec}^2 yields the scale for the contributions with $D \to K_L X$ of **1.3**
- method validated in electron and muon-enriched samples: results consistent at 10% level

 \rightarrow Use as 30% as a correction + 10% systematic uncertainty

Example of stability check

datasets, according to various features

Elisa Manoni, INFN Perugia

• Stability checks by splitting the sample into pairs of statistically independent