

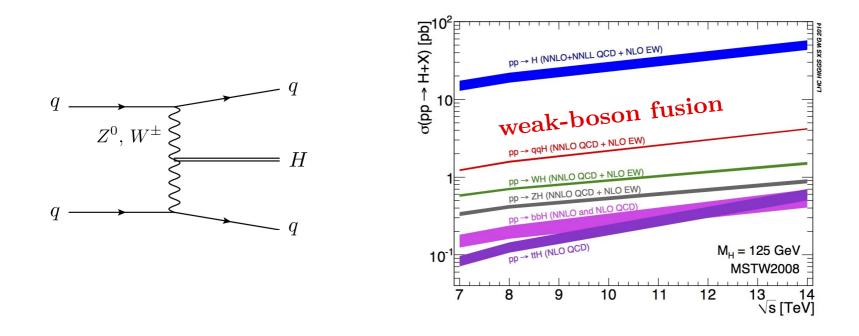
Universität Regensburg

Anomalous Higgs boson couplings in WBF Higgs boson production

Konstantin Asteriadis | 10/04/2023BROOKHAVEN FORUM 2023

For more details see Phys. Rev. D 107 (2023) 3, 034034. Work done at BNL in collaboration with Fabrizio Caola, Kirill Melnikov and Raoul Röntsch.

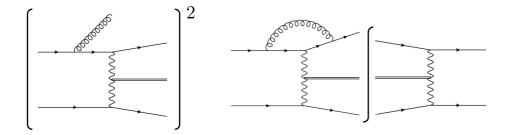
Higgs-boson production in weak-boson fusion (WBF)



- Important production channel of Higgs boson @LHC (second highest cross section @14TeV)
- Probes electro-weak sector
- Very distinct signature

Higher order QCD correction to vector-boson fusion

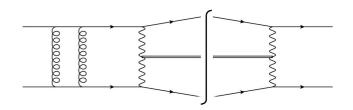
• 2 classes of corrections to the amplitude squared:



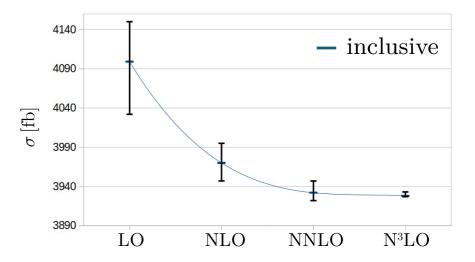
factorizable (in the following)

- Inclusive known till $N^{3}LO$ [Dreyer, Karlberg '16] \rightarrow Nicely converging, N³LO within residual scale uncertainties
- Fully differential known till NNLO [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15; Cruz-Martinez, Glover, Gehrmann, Huss '18]

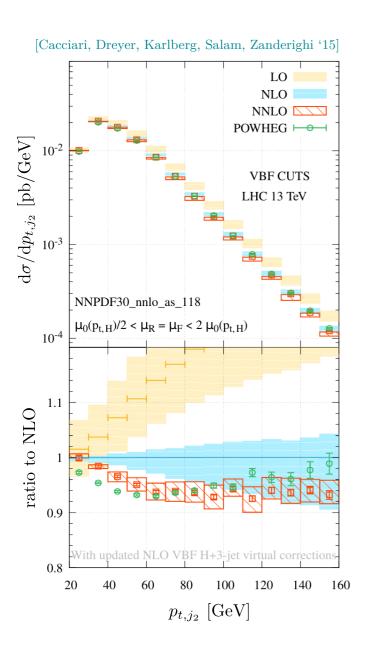
 \rightarrow Fiducial cuts: NNLO corrections outside of residual NLO scale uncertainties

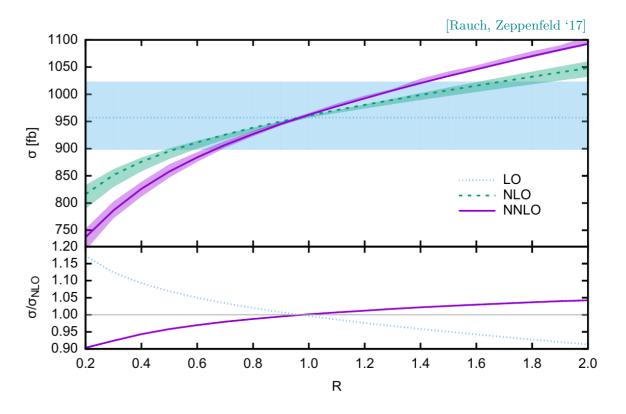


non-factorizable



Effect of fiducial cuts





- Non-trivial jet dynamics in WBF Higgs boson poduction
- New Physics:
 - New operators \rightarrow New tensor structures
 - Studied at NLO QCD [Hankele, Klämke, Zeppenfeld '06]
 → Potential interplay with real radiation at higher orders
 → Can we trust NLO analysis?
 - Higgs coupling to weak bosons measured to O(30%)
- 4 Anomalous Higgs boson couplings in WBF Higgs boson production Konstantin Asteriadis

Anomalous HVV interactions

• Most general tensor structure of the HVV vertex (Lorentz invariance / Bose symmetry)

$$\begin{array}{l} H & \begin{array}{c} p_{1} \\ \hline p_{2} \\ \hline p_{2} \\ \hline v_{\nu} \end{array} V_{\mu} = i \left[g^{\mu\nu} A(p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}) + p_{1}^{\nu} p_{2}^{\mu} B(p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}) + i \epsilon^{\mu\nu\rho\sigma} p_{1,\rho} p_{2,\sigma} C(p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}) \right] \\ \hline v_{\nu} \end{array}$$
only dimension 6 SMEFT [Helset, Martin, Trott '20]
$$= i g_{HVV}^{(SM)} \left[g^{\mu\nu} \left(1 + \frac{m_{H}^{2}}{\Lambda^{2}} c_{HVV}^{(2)} + \frac{p_{1}^{2} + p_{2}^{2}}{\Lambda^{2}} c_{HVV}^{(1)} \right) + \frac{2p_{1}^{\nu} p_{2}^{\mu}}{\Lambda^{2}} c_{HVV}^{(1)} - \frac{\tilde{c}_{HVV}(6\pi) \epsilon^{\mu\nu\rho\sigma} p_{1,\rho} p_{2,\sigma}}{\Lambda^{2}} \right]$$
"rescaling" of SM CP-even coupling CP-odd coupling

- (6 π) in CP-odd contribution such that $\tilde{c}_{HVV} = 1 \rightarrow O(1\%)$ deviation of the LO fiducial cross section
- Consider "symmetric" model where non-SM couplings to W and Z are identical (main difference accounted for via factoring out SM coupling)

Fiducial cross section at any order

$$\sigma_{\rm fid} = \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right)^2 X_1 + \left(c_{HVV}^{(1)}\right)^2 X_2 + \left(\tilde{c}_{HVV}\right)^2 X_3 + \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right) c_{HVV}^{(1)} X_4 \\ + \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right) \tilde{c}_{HVV} X_5 + c_{HVV}^{(1)} \tilde{c}_{HVV} X_6 \,.$$

where

$$X_i = X_i^{\rm LO} + \frac{\alpha_s}{4\pi} X_i^{\rm NLO} + \left(\frac{\alpha_s}{4\pi}\right)^2 X_i^{\rm NNLO} + \mathcal{O}(\alpha_s^3)$$

- $X_5 = X_6 = 0$ for fiducial cross sections because it is integrate over the full angular phase space
- Compute X_{1,2,3,4} individually

Fiducial cross section at any order

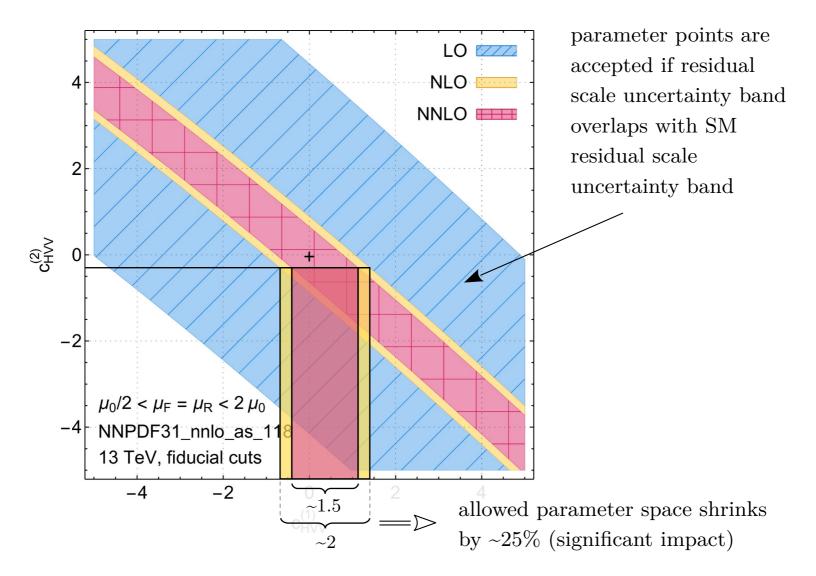
$$\sigma_{\rm fid} = \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right)^2 X_1 + \left(c_{HVV}^{(1)}\right)^2 X_2 + \left(\tilde{c}_{HVV}\right)^2 X_3 + \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right) c_{HVV}^{(1)} X_4 \\ + \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right) \tilde{c}_{HVV} X_5 + c_{HVV}^{(1)} \tilde{c}_{HVV} X_6 \,.$$

• Results

$\sigma_{ m fid}~({ m fb})$	LO	NLO	NNLO
X_1	971_{+69}^{-61}	890^{+8}_{-18}	859^{+8}_{-10}
X_2	$0.413^{-0.033}_{+0.039}$	$0.398\substack{+0.001\\-0.005}$	$0.383\substack{+0.004\\-0.005}$
X_3	$19.57^{-1.84}_{+2.22}$	$19.64_{-0.07}^{-0.25}$	$19.25\substack{+0.08 \\ -0.18}$
X_4	$26.43^{-1.61}_{+1.80}$	$23.45_{-0.66}^{+0.35}$	$22.53_{-0.42}^{+0.39}$

- X₁ largest (by construction since it corresponds to the SM contribution)
- Large scale uncertainty decrease from LO \rightarrow NLO; only $\sim 20\%$ from NLO \rightarrow NNLO
- Similar k-factors for all $X_{1,2,3,4}$ (~ -4% from NLO \rightarrow NNLO)
- Having $X_{1,2,3,4}$ available allows to study the allowed parameter space

Allowed parameter space: fiducial cross section

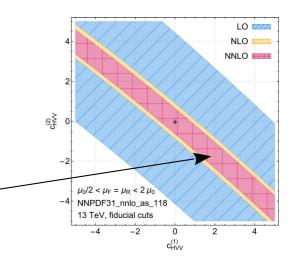


• Similar results for all pairs of anomalous couplings

Differential distributions

- Computing differential distributions is numerically expensive
- Hence instead of computing differential coefficients $X_{1,2,3,4,5,6}$ we consider two fixed scenarios

Sce. A:
$$c_{HVV}^{(1)} = +1.5$$
, $c_{HVV}^{(2)} = -1.9$, $\tilde{c}_{HVV} = +0.6$
Sce. B: $c_{HVV}^{(1)} = -1.8$, $c_{HVV}^{(2)} = -0.1$, $\tilde{c}_{HVV} = -1.5$

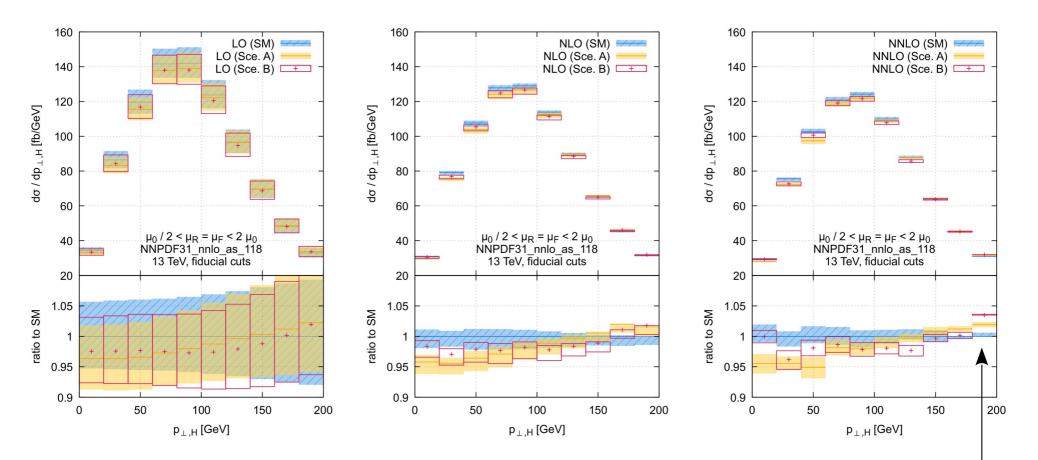


• They are chosen such that fiducial cross section are indistinguishable

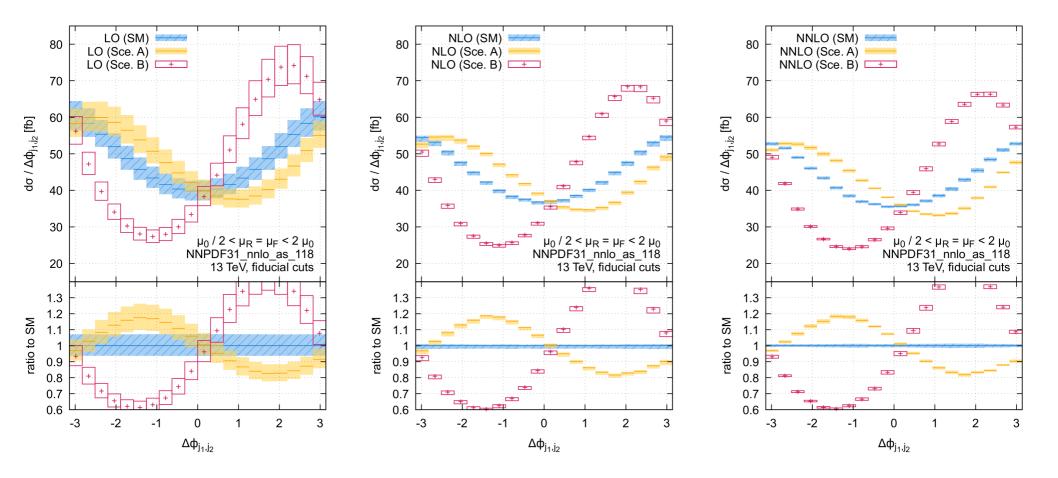
$\sigma_{ m fid}~({ m fb})$	SM	Sce. A	Sce. B	
LO	971_{+69}^{-61}	960_{+68}^{-61}	965_{+71}^{-63}	
NLO	890^{+8}_{-18}	882^{+7}_{-17}	890^{+6}_{-17}	
NNLO	859^{+8}_{-10}	851^{+9}_{-8}	860^{+8}_{-8}	
$\leq 1\%$ and covered by				
residual scale uncertainties				

Differential distributions

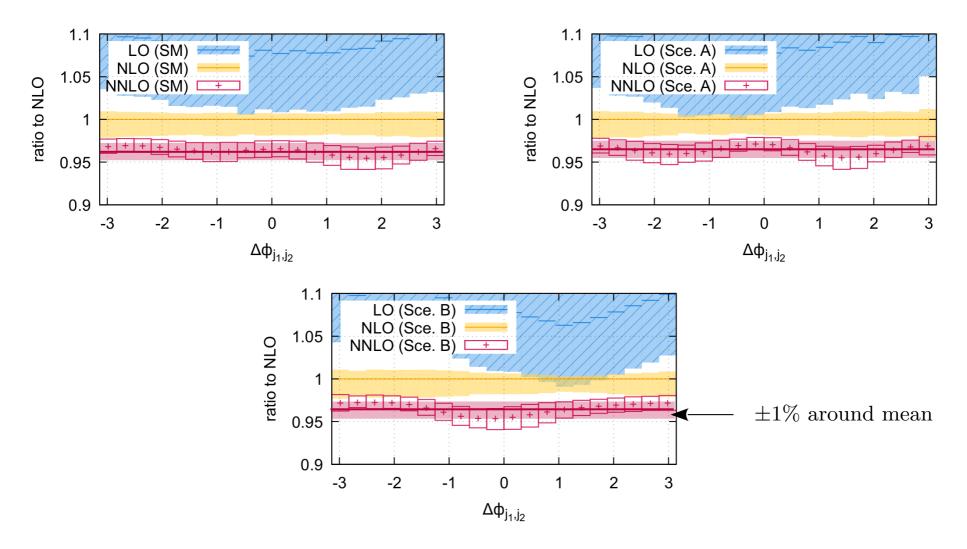
- Most distributions are **NOT** sensitive to anomalous couplings [Hankele, Klämke, Zeppenfeld '06]
- For example consider Higgs transverse momentum distribution



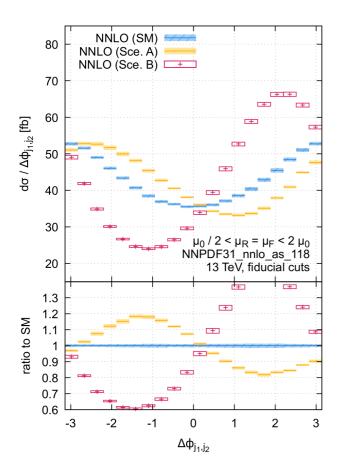
start of diverging distributions, expected but cross section already down by an order



- At LO: Sce. B and SM distinguishable, Sce. A and SM just covered by scale variation
- Similar to fiducial cross section: no significant reduction of scale uncertainties from NLO \rightarrow NNLO



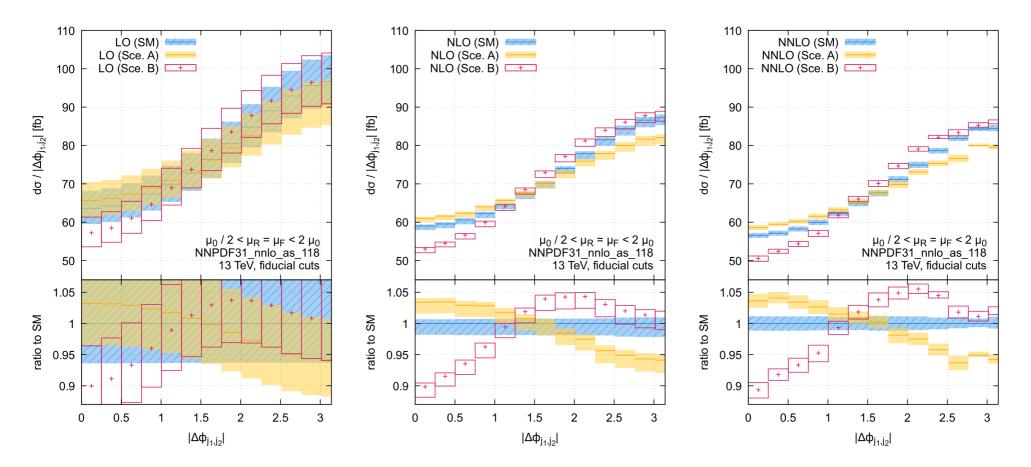
- K-factor rather flat and almost independent of anomalous couplings
- K-factors rather flat \rightarrow global rescaling from NLO to NNLO should be sufficient for O(1%)



- Deviation(s) from SM dominated by antisymetric contributions \rightarrow CP-odd / CP-even interference
- Ratio of events with $\Delta \varphi < 0$ and $\Delta \varphi > 0$ might be useful to include differential data in exclusion plots in a efficient way (cut-and-count approach)
- To study CP-even couplings, consider absolute value of $\Delta \phi$ where CP-odd / CP-even interference again drops out

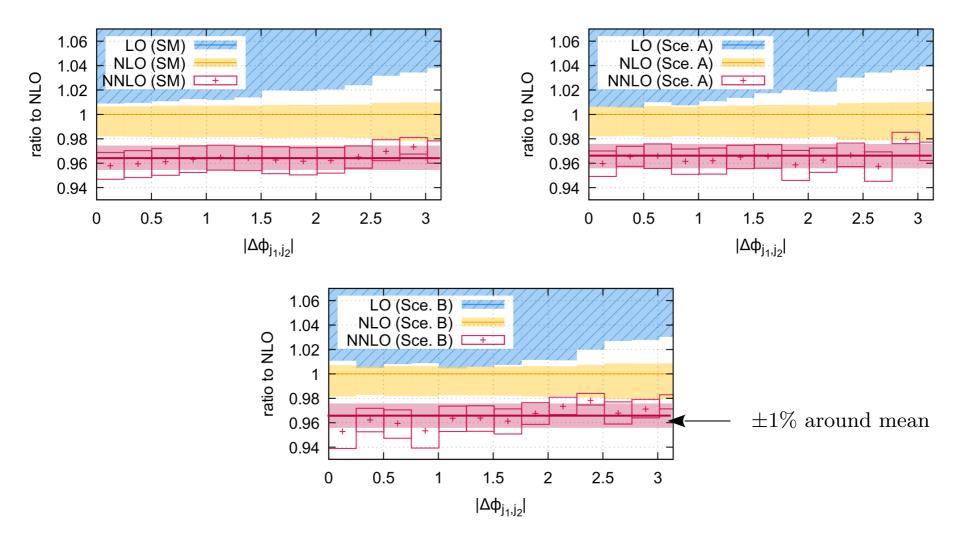
Anomalous Higgs boson couplings in WBF Higgs boson production Konstantin Asteriadis

 $|\Delta \varphi|$ a CP insensitive observable



• At LO differences are swamped by scale uncertainty

- Starting from NLO scale uncertainties sufficiently reduced to distinguish between different scenarios and SM; NNLO might help to distinguish from SM
- Ratio of events with $|\Delta \varphi| < \pi/2$ and $|\Delta \varphi| > \pi/2$ might be useful to include differential data in exclusion plots in a efficient way (cut-and-count approach)
- 14 Anomalous Higgs boson couplings in WBF Higgs boson production Konstantin Asteriadis

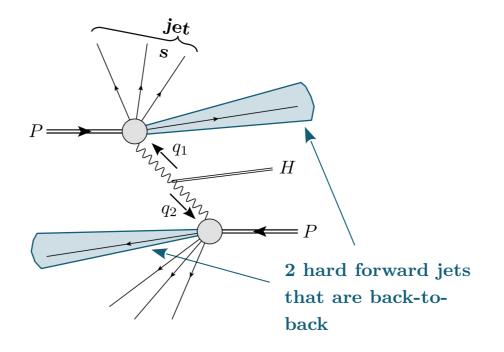


- K-factor rather flat and almost independent of anomalous couplings
- K-factors rather flat \rightarrow global rescaling from NLO to NNLO should be sufficient for O(1%)

Conclusion and Outlook

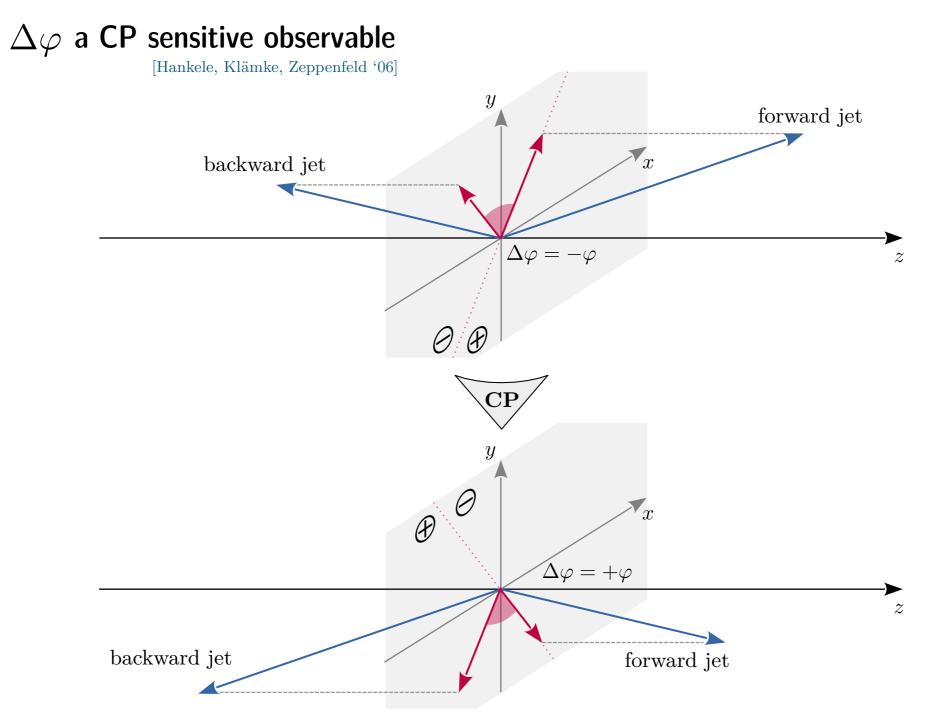
- Higher order QCD corrections in New Physics scenarios similar to SM \rightarrow No significant shape change from NLO \rightarrow NNLO \rightarrow May be captured with global K-factor
- NLO and NNLO have similar "discriminating power" \rightarrow NNLO study indicates analysis at NLO is robust
- Future work: Include differential data into exclusion plots
- **Future work:** Include higher order operators (In particular once that are directly affected by QCD) radiation; allow for different HZZ and HWW couplings

Miscellaneous



Typical VBF cuts:

- At least 2 resolved "tag" jets with $p_{\perp,j} > 25 \,\text{GeV}$ and $-4.5 < y_j < 4.5$
- Separated in rapidity $|y_{j_1} y_{j_2}| > 4.5$ and in different hemispheres $y_{j_1} \times y_{j_2} < 0$
- Invariant mass $\sqrt{(p_{j_1} + p_{j_2})^2} > 600 \,\mathrm{GeV}$
- Jets identified using anti-kt jet-algorithm with R = 0.4

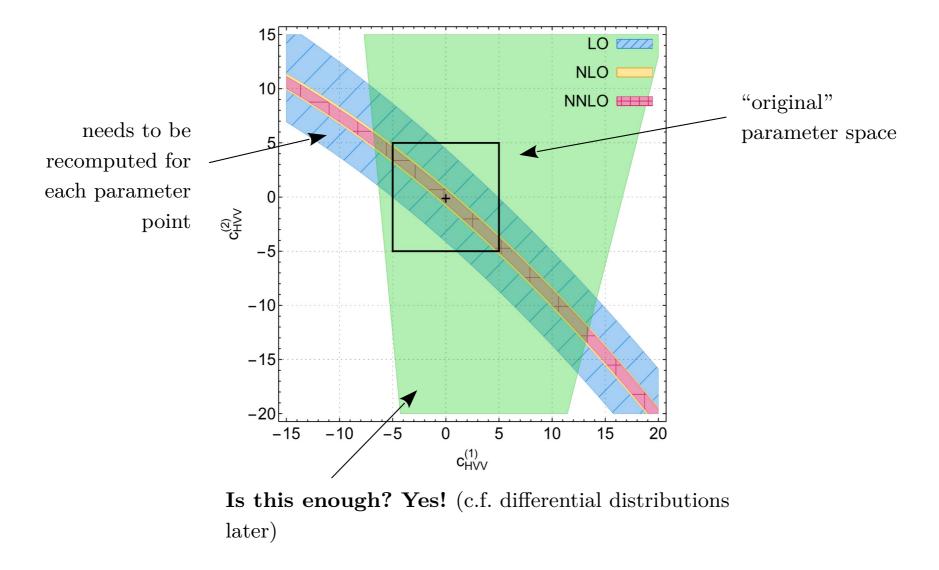


19 Anomalous Higgs boson couplings in WBF Higgs boson production Konstantin Asteriadis

October 4, 2023 BROOKHAVEN FORUM 2023

Numerical control and extrapolation to parameter space

• Area where numerical error is *smaller-equal* then the residual scale uncertainty



²⁰ Anomalous Higgs boson couplings in WBF Higgs boson production Konstantin Asteriadis

Connection to SMEFT Wilson coefficients in Warsaw basis

$$\begin{split} c_{HWW}^{(1)} &= \frac{C_{\varphi W}}{\sqrt{2}G_f M_W^2}, \qquad \qquad c_{HZZ}^{(1)} &= \frac{1}{\sqrt{2}G_f M_Z^4} \Big[C_{\varphi B} (M_Z^2 - M_W^2) \\ &+ C_{\varphi W} M_W^2 + C_{\varphi W B} M_W \sqrt{M_Z^2 - M_W^2} \Big], \\ c_{HWW}^{(2)} &= -\frac{1}{\sqrt{2}G_f} \Big[\frac{C_{\varphi W}}{M_W^2} + \frac{2C_{\varphi l}^{(3)} - C_{ll}}{2m_H^2} - \frac{4C_{\varphi \Box} - C_{\varphi D}}{4m_H^2} \Big], \\ \tilde{c}_{HWW} &= -\frac{2C_{\varphi \tilde{W}}}{(6\pi)\sqrt{2}G_f M_W^2}, \\ c_{HZZ}^{(2)} &= -\frac{1}{\sqrt{2}G_f} \Big[\frac{C_{\varphi B} (M_Z^2 - M_W^2)}{M_Z^4} + \frac{C_{\varphi W} M_W^2}{M_Z^4} + \frac{C_{\varphi WB} M_W \sqrt{M_Z^2 - M_W^2}}{M_Z^4} + \frac{2C_{\varphi l}^{(3)} - C_{ll}}{2m_H^2} - \frac{4C_{\varphi \Box} + C_{\varphi D}}{4m_H^2} \Big], \\ \tilde{c}_{HZZ} &= -\frac{2}{(6\pi)\sqrt{2}G_f M_Z^4} \Big[C_{\varphi \tilde{B}} (M_Z^2 - M_W^2) + C_{\varphi \tilde{W}} M_W^2 + C_{\varphi \tilde{W} B} M_W \sqrt{M_Z^2 - M_W^2} \Big], \end{split}$$

For more details see Phys. Rev. D 107 (2023) 3, 034034.

21 Anomalous Higgs boson couplings in WBF Higgs boson production Konstantin Asteriadis

October 4, 2023 BROOKHAVEN FORUM 2023