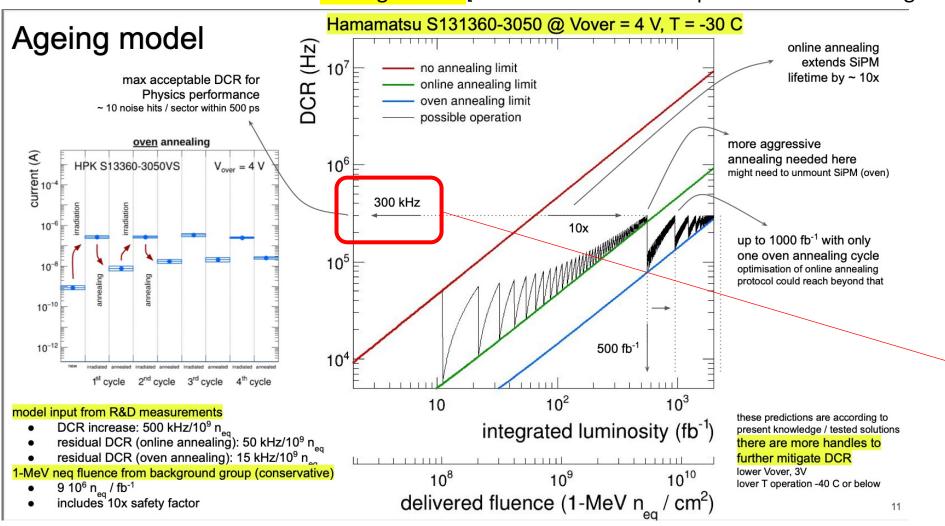


dRICH throughput update

P. Antonioli on behalf of dRICH Collaboration

Why this update?


- Following PID review and other work several numbers further optimized (at PID review we said optimization was on-going)
- On-going communication between Marco → Beni/David/Fernando to converge on numbers
- Here focus on predicted throughput (following some discussion in Streaming RDO group)

Max acceptable DCR is main driver

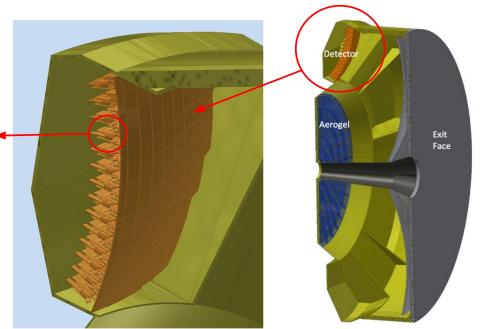
R. Preghenella [slide shown in several presentation including HEP-EPS]

This number is now main input for throughput worst case

Readout segmentation

Photodetector unit

conceptual design of final layout



R. Preghenella [@last TIC meeting]

compact solution to minimise space

- cold plate and flex-PCB circuit
- uniform sensor cooling with no loss of active area
- all electronics and services on the back side

Main points for us:

- 1) 1 RDO per PDU \rightarrow 1242 RDO
- 2) X DAM-L1
- 3) Y DAM-L2
- → an interaction tagger giving reduction factor 200 is key and part of the model
- → we use DAM as intermediate cards waiting for interaction tagger

Throughput modeling (params)

dRICH DAQ parameters		ALCOR parameters	Notes	
RDO boards 1242		Front end limit [kHz]		
ALCOR64 x RDO	4	ALCOR Clock [MHz]	394,08 ▼	It will be 394.08 MHz or 295.55 MHz
dRICH channels (total)	317952	Channels/serializer	8	
Number of DAM L1	27	Bits per hit	64	2 32-bit words per hit (also TOT)
Input link in DAM L1	46	Bits per hit encoding 8/10	80	
Output links in DAM L1	1	Serializer band limit [Mb/s]	788,16	
Number of DAM L2	1	Theoretical Serializer limit/ channel [kHz]	1231,5	this would be with 0 control words
Input link to DAM L2	27	Serializer limit single ch [kHz]	800	this is expected to improve with ALCOR v3
Link bandwidth [Gb/s] (assumes PolarFlre)	12,7	Number of serializer per chip	8	
Interaction tagger reduction factor	200	Channel/chip	64	
Interaction tagger latency [s]	2,00E-06	Shutter width (ns)	2	
EIC parameters				
EIC Clock [MHz]	98,522			
Orbit efficiency (takes into account gap)	0,92			

Note 1: we realized that the number of 1240 RDO recently circulated is not divisible by 6... so \rightarrow 1242

Note 2: DAM-L1+DAM-L2 optimization "27+1" (but some further studies needed here... consider configuration etc.). 30+6

could be "luxury" configuration

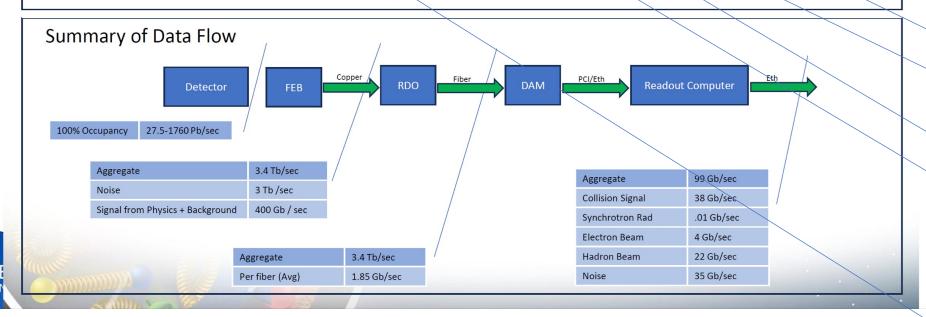
Note 3: ALCOR shutter part of the model

Note 4: interaction tagger part of the model

Throughput modeling (results)

	Bandwidth analysis		Limit	Comments	
NPUT	Sensor rate per channel [kHz]	300,00 ▼	4.000,00		ALCOR
	Rate post-shutter [kHz]	55,20	800,00		, 1266 H
	Throughput to serializer [Mb/s]	34,50	788,16		RDO
	Throughput from ALCOR64 [Mb/s]	276,00		limit FPGA dependent: with RDO prototype we v	vill have something
	Throughput from RDO [Gb/s]	1,08	12,70	based on Microchip	
	Input at each DAM I [Gbps]	49,59	584,20		
	Buffering capacity at DAM I [MB]	0,01		to be checked but seems manageable	
	Throughput from DAM I to DAM II [Gbps]	0,25	12,70	this might be higher (from FELIX to FELIX)	This is the aggregated
	Output to each DAM II [Gbps]	6,70	342,90		number we could sell
					Hallibel We could sell

Aggregated dRICH data		Comments			
Total input at DAM I [Gb/s]	1.339,03	This is only "inside" DAM, not to be transferred on PCI			
Total input at DAM II [Gb/s]	6,70	This is based on aggregation above + reduction factor of the interaction tagger			
Total output from DAM II [Gb/s]	6,70	Further reduction possible to be investigated (FPGA level?)			


Note: first hard limit (RDO-DAM link) hit only at 3 MHz input..

But we should think how to present things... (see next slide)

Summary of Channel Counts By Jeff Landgraf, presented on Aug 22 WG meeting [link]

Detector	Channels					RDO	Fiber	DAM	Data	Data
Group	MAPS	AC-LGAD	SiPM/PMT	MPGD	HRPPD				Volume (RDO) (Gb/s)	Volume (To Tape) (Gb/s)
Tracking	36B			202k		872	1744	24	27	26
Calorimeters	88M		123k			258	556	10	502	27
Far Forward	300M	2.3M	170k			178	492	5	15	8
Far Backward	146M		2k			50	100	6	150	1
PID		7.8M	320k		140k	241	523	39	2628	36
TOTAL	36.5B	10.1M	615k	202k	140k	1599	3415	84	3,322	98

How much of this is dRICH?

dRICH only is more than this....

We don't have here DAM-L2/DAM-L1, should we represent it somehow?

dRICH is ok